Sultanov et al., 2010 - Google Patents
Simulation technique for available bandwidth estimationSultanov et al., 2010
View PDF- Document ID
- 9766340552572715002
- Author
- Sultanov T
- Sukhov A
- Publication year
- Publication venue
- 2010 Fourth UKSim European Symposium on Computer Modeling and Simulation
External Links
Snippet
This paper proposes a method for measuring the available bandwidth, based on testing network packets of various sizes (variable packet size method, VPS). The range of applicability of the model has been found, it is based on the accuracy of the measurements …
- 238000000034 method 0 title abstract description 6
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L43/00—Arrangements for monitoring or testing packet switching networks
- H04L43/08—Monitoring based on specific metrics
- H04L43/0852—Delays
- H04L43/0864—Round trip delays
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L43/00—Arrangements for monitoring or testing packet switching networks
- H04L43/08—Monitoring based on specific metrics
- H04L43/0852—Delays
- H04L43/087—Jitter
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L43/00—Arrangements for monitoring or testing packet switching networks
- H04L43/08—Monitoring based on specific metrics
- H04L43/0823—Errors
- H04L43/0829—Packet loss
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L43/00—Arrangements for monitoring or testing packet switching networks
- H04L43/08—Monitoring based on specific metrics
- H04L43/0876—Network utilization
- H04L43/0888—Throughput
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L43/00—Arrangements for monitoring or testing packet switching networks
- H04L43/08—Monitoring based on specific metrics
- H04L43/0876—Network utilization
- H04L43/0882—Utilization of link capacity
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L12/00—Data switching networks
- H04L12/02—Details
- H04L12/26—Monitoring arrangements; Testing arrangements
- H04L12/2697—Testing equipment; Routine testing
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L12/00—Data switching networks
- H04L12/54—Store-and-forward switching systems
- H04L12/56—Packet switching systems
- H04L12/5695—Admission control; Resource allocation
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L12/00—Data switching networks
- H04L12/02—Details
- H04L12/26—Monitoring arrangements; Testing arrangements
- H04L12/2602—Monitoring arrangements
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L47/00—Traffic regulation in packet switching networks
- H04L47/10—Flow control or congestion control
- H04L47/22—Traffic shaping
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L47/00—Traffic regulation in packet switching networks
- H04L47/10—Flow control or congestion control
- H04L47/19—Flow control or congestion control at layers above network layer
- H04L47/193—Flow control or congestion control at layers above network layer at transport layer, e.g. TCP related
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L43/00—Arrangements for monitoring or testing packet switching networks
- H04L43/10—Arrangements for monitoring or testing packet switching networks using active monitoring, e.g. heartbeat protocols, polling, ping, trace-route
- H04L43/106—Arrangements for monitoring or testing packet switching networks using active monitoring, e.g. heartbeat protocols, polling, ping, trace-route by adding timestamps to packets
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L41/00—Arrangements for maintenance or administration or management of packet switching networks
- H04L41/50—Network service management, i.e. ensuring proper service fulfillment according to an agreement or contract between two parties, e.g. between an IT-provider and a customer
- H04L41/5003—Managing service level agreement [SLA] or interaction between SLA and quality of service [QoS]
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L43/00—Arrangements for monitoring or testing packet switching networks
- H04L43/50—Testing arrangements
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L45/00—Routing or path finding of packets in data switching networks
- H04L45/12—Shortest path evaluation
- H04L45/121—Minimizing delay
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L41/00—Arrangements for maintenance or administration or management of packet switching networks
- H04L41/14—Arrangements for maintenance or administration or management of packet switching networks involving network analysis or design, e.g. simulation, network model or planning
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L45/00—Routing or path finding of packets in data switching networks
- H04L45/02—Topology update or discovery
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L12/00—Data switching networks
- H04L12/28—Data switching networks characterised by path configuration, e.g. local area networks [LAN], wide area networks [WAN]
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9654370B2 (en) | Method and node arrangement for providing more accurate estimation of data path conditions | |
Jain et al. | End-to-end available bandwidth: Measurement methodology, dynamics, and relation with TCP throughput | |
Hernandez et al. | One-way delay measurement and characterization | |
US7525923B2 (en) | Catprobe | |
US9503384B1 (en) | Estimating network capacity and network bandwidth without server instrumentation | |
US20020133614A1 (en) | System and method for remotely estimating bandwidth between internet nodes | |
US9906427B2 (en) | Method for performing a bandwidth test for communications from a first network station to a second network station of a communication network and corresponding apparatuses for performing the method steps and corresponding computer program products | |
Andrew et al. | Towards a common TCP evaluation suite | |
US8885473B2 (en) | Method for measurement of asymmetric network capacities | |
JP2008278207A (en) | Available bandwidth estimation system, stream data distribution system, method, and program | |
Maslouhi et al. | Analysis of end-to-end packet delay for internet of things in wireless communications | |
Vakili et al. | Accurate one-way delay estimation: Limitations and improvements | |
Bisu et al. | A framework for end-to-end latency measurements in a satellite network environment | |
Kachan et al. | Available bandwidth measurement for 10 Gbps networks | |
Sultanov et al. | Simulation technique for available bandwidth estimation | |
Delphinanto et al. | End-to-end available bandwidth probing in heterogeneous IP home networks | |
Abut et al. | An experimental evaluation of tools for estimating bandwidth-related metrics | |
Carlucci et al. | Congestion control for real-time communications: A comparison between NADA and GCC | |
Bahnasy et al. | Proactive ethernet congestion control based on link utilization estimation | |
Di Benedetto et al. | Modeling of traffic congestion and re-routing in a service provider network | |
Turrubiartes et al. | Analysis of IP network path capacity estimation using a variable packet size method | |
Li et al. | A two-way available bandwidth estimation scheme for multimedia streaming networks adopting scalable video coding | |
De A. Rocha et al. | A non-cooperative active measurement technique for estimating the average and variance of the one-way delay | |
Sukhov et al. | Throughput metrics and packet delay in TCP/IP networks | |
Kang et al. | On estimating tight-link bandwidth characteristics over multi-hop paths |