Sharma, 2023 - Google Patents
Analysis of single photon detectors in differential phase shift quantum key distributionSharma, 2023
View PDF- Document ID
- 9705349508053628745
- Author
- Sharma V
- Publication year
- Publication venue
- Optical and Quantum Electronics
External Links
Snippet
In the current research work, an analysis of differential phase shift quantum key distribution using InGaAs/InP and Silicon-APD (avalanche photodiode) as single photon detectors is performed. Various performance parameters of interest such as shifted key rate, secure key …
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L9/00—Cryptographic mechanisms or cryptographic arrangements for secret or secure communication
- H04L9/08—Key distribution or management, e.g. generation, sharing or updating, of cryptographic keys or passwords
- H04L9/0816—Key establishment, i.e. cryptographic processes or cryptographic protocols whereby a shared secret becomes available to two or more parties, for subsequent use
- H04L9/0852—Quantum cryptography
- H04L9/0858—Details about key distillation or coding, e.g. reconciliation, error correction, privacy amplification, polarisation coding or phase coding
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L9/00—Cryptographic mechanisms or cryptographic arrangements for secret or secure communication
- H04L9/08—Key distribution or management, e.g. generation, sharing or updating, of cryptographic keys or passwords
- H04L9/0816—Key establishment, i.e. cryptographic processes or cryptographic protocols whereby a shared secret becomes available to two or more parties, for subsequent use
- H04L9/0819—Key transport or distribution, i.e. key establishment techniques where one party creates or otherwise obtains a secret value, and securely transfers it to the other(s)
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L9/00—Cryptographic mechanisms or cryptographic arrangements for secret or secure communication
- H04L9/32—Cryptographic mechanisms or cryptographic arrangements for secret or secure communication including means for verifying the identity or authority of a user of the system or for message authentication, e.g. authorization, entity authentication, data integrity or data verification, non-repudiation, key authentication or verification of credentials
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L2209/00—Additional information or applications relating to cryptographic mechanisms or cryptographic arrangements for secret or secure communication H04L9/00
- H04L2209/08—Randomization, e.g. dummy operations or using noise
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L2209/00—Additional information or applications relating to cryptographic mechanisms or cryptographic arrangements for secret or secure communication H04L9/00
- H04L2209/80—Wireless
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B10/00—Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
- H04B10/70—Photonic quantum communication
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L63/00—Network architectures or network communication protocols for network security
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B10/00—Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
- H04B10/50—Transmitters
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B10/00—Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
- H04B10/25—Arrangements specific to fibre transmission
-
- G—PHYSICS
- G02—OPTICS
- G02F—DEVICES OR ARRANGEMENTS, THE OPTICAL OPERATION OF WHICH IS MODIFIED BY CHANGING THE OPTICAL PROPERTIES OF THE MEDIUM OF THE DEVICES OR ARRANGEMENTS FOR THE CONTROL OF THE INTENSITY, COLOUR, PHASE, POLARISATION OR DIRECTION OF LIGHT, e.g. SWITCHING, GATING, MODULATING OR DEMODULATING; TECHNIQUES OR PROCEDURES FOR THE OPERATION THEREOF; FREQUENCY-CHANGING; NON-LINEAR OPTICS; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating, or modulating; Non-linear optics
- G02F1/35—Non-linear optics
- G02F1/353—Frequency conversion, i.e. wherein a light beam with frequency components different from those of the incident light beams is generated
- G02F1/3544—Particular phase matching techniques
- G02F2001/3548—Quasi-phase-matching [QPM], e.g. using a periodic domain inverted structure
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L2209/00—Additional information or applications relating to cryptographic mechanisms or cryptographic arrangements for secret or secure communication H04L9/00
- H04L2209/60—Digital content management, e.g. content distribution
-
- G—PHYSICS
- G02—OPTICS
- G02F—DEVICES OR ARRANGEMENTS, THE OPTICAL OPERATION OF WHICH IS MODIFIED BY CHANGING THE OPTICAL PROPERTIES OF THE MEDIUM OF THE DEVICES OR ARRANGEMENTS FOR THE CONTROL OF THE INTENSITY, COLOUR, PHASE, POLARISATION OR DIRECTION OF LIGHT, e.g. SWITCHING, GATING, MODULATING OR DEMODULATING; TECHNIQUES OR PROCEDURES FOR THE OPERATION THEREOF; FREQUENCY-CHANGING; NON-LINEAR OPTICS; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating, or modulating; Non-linear optics
- G02F1/35—Non-linear optics
- G02F1/353—Frequency conversion, i.e. wherein a light beam with frequency components different from those of the incident light beams is generated
- G02F1/3536—Four-wave interaction
- G02F1/3538—Four-wave interaction for optical phase conjugation
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Diamanti et al. | Practical challenges in quantum key distribution | |
Lo et al. | Secure quantum key distribution | |
Pittaluga et al. | 600-km repeater-like quantum communications with dual-band stabilization | |
Yoshino et al. | Quantum key distribution with an efficient countermeasure against correlated intensity fluctuations in optical pulses | |
Roberts et al. | Experimental measurement-device-independent quantum digital signatures | |
Steinlechner et al. | Distribution of high-dimensional entanglement via an intra-city free-space link | |
Nunn et al. | Large-alphabet time-frequency entangled quantum key distribution by means of time-to-frequency conversion | |
Wang et al. | 25 MHz clock continuous-variable quantum key distribution system over 50 km fiber channel | |
Stucki et al. | Continuous high speed coherent one-way quantum key distribution | |
Honjo et al. | Long-distance entanglement-based quantum key distribution over optical fiber | |
Tanaka et al. | Ultra fast quantum key distribution over a 97 km installed telecom fiber with wavelength division multiplexing clock synchronization | |
Diamanti et al. | 100 km differential phase shift quantum key distribution experiment with low jitter up-conversion detectors | |
Ren et al. | Demonstration of high-speed and low-complexity continuous variable quantum key distribution system with local local oscillator | |
Ikuta et al. | Four-dimensional entanglement distribution over 100 km | |
Kim et al. | Quantum communication with time-bin entanglement over a wavelength-multiplexed fiber network | |
Scherer et al. | Long-distance practical quantum key distribution by entanglement swapping | |
Varnava et al. | An entangled-LED-driven quantum relay over 1 km | |
Valivarthi et al. | Plug-and-play continuous-variable quantum key distribution for metropolitan networks | |
Samsonov et al. | Subcarrier wave continuous variable quantum key distribution with discrete modulation: mathematical model and finite-key analysis | |
Sharma | Analysis of single photon detectors in differential phase shift quantum key distribution | |
Kim et al. | Noise-resistant quantum communications using hyperentanglement | |
Yu et al. | Spectrally multiplexed indistinguishable single-photon generation at telecom-band | |
Liu et al. | Differential-phase-shift quantum key distribution using heralded narrow-band single photons | |
Kovalenko et al. | Frequency-multiplexed entanglement for continuous-variable quantum key distribution | |
Kirsanov et al. | Forty thousand kilometers under quantum protection |