[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

Nayak et al., 2020 - Google Patents

A framework for adding low-overhead, fine-grained power domains to CGRAs

Nayak et al., 2020

View PDF
Document ID
9549211141180433811
Author
Nayak A
Zhang K
Setaluri R
Carsello A
Mann M
Richardson S
Bahr R
Hanrahan P
Horowitz M
Raina P
Publication year
Publication venue
2020 Design, Automation & Test in Europe Conference & Exhibition (DATE)

External Links

Snippet

To effectively minimize static power for a wide range of applications, power domains for a coarse-grained reconfigurable array (CGRA) need to be finer-grained than a typical ASIC. However, the special isolation logic needed to ensure electrical protection between off and …
Continue reading at keyizhang.com (PDF) (other versions)

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/50Computer-aided design
    • G06F17/5045Circuit design
    • G06F17/5054Circuit design for user-programmable logic devices, e.g. field programmable gate arrays [FPGA]
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/50Computer-aided design
    • G06F17/5045Circuit design
    • G06F17/505Logic synthesis, e.g. technology mapping, optimisation
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/50Computer-aided design
    • G06F17/5009Computer-aided design using simulation
    • HELECTRICITY
    • H03BASIC ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K19/00Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits
    • H03K19/02Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits using specified components
    • H03K19/173Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits using specified components using elementary logic circuits as components
    • H03K19/177Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits using specified components using elementary logic circuits as components arranged in matrix form
    • H03K19/17736Structural details of routing resources
    • HELECTRICITY
    • H03BASIC ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K19/00Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits
    • H03K19/02Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits using specified components
    • H03K19/173Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits using specified components using elementary logic circuits as components
    • H03K19/177Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits using specified components using elementary logic circuits as components arranged in matrix form
    • H03K19/17724Structural details of logic blocks
    • HELECTRICITY
    • H03BASIC ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K19/00Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits
    • H03K19/02Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits using specified components
    • H03K19/173Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits using specified components using elementary logic circuits as components
    • H03K19/177Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits using specified components using elementary logic circuits as components arranged in matrix form
    • H03K19/1778Structural details for adapting physical parameters
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F15/00Digital computers in general; Data processing equipment in general
    • G06F15/76Architectures of general purpose stored programme computers
    • G06F15/78Architectures of general purpose stored programme computers comprising a single central processing unit
    • HELECTRICITY
    • H03BASIC ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K19/00Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits
    • H03K19/02Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits using specified components
    • H03K19/173Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits using specified components using elementary logic circuits as components
    • H03K19/177Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits using specified components using elementary logic circuits as components arranged in matrix form
    • H03K19/17704Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits using specified components using elementary logic circuits as components arranged in matrix form the logic functions being realised by the interconnection of rows and columns
    • HELECTRICITY
    • H03BASIC ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K19/00Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits
    • H03K19/02Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits using specified components
    • H03K19/173Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits using specified components using elementary logic circuits as components
    • H03K19/1733Controllable logic circuits
    • H03K19/1735Controllable logic circuits by wiring, e.g. uncommitted logic arrays
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/50Computer-aided design
    • G06F17/5068Physical circuit design, e.g. layout for integrated circuits or printed circuit boards
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F1/00Details of data-processing equipment not covered by groups G06F3/00 - G06F13/00, e.g. cooling, packaging or power supply specially adapted for computer application
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F2217/00Indexing scheme relating to computer aided design [CAD]
    • G06F2217/70Fault tolerant, i.e. transient fault suppression
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F7/00Methods or arrangements for processing data by operating upon the order or content of the data handled
    • HELECTRICITY
    • H03BASIC ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K19/00Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits
    • H03K19/0008Arrangements for reducing power consumption

Similar Documents

Publication Publication Date Title
US8629548B1 (en) Clock network fishbone architecture for a structured ASIC manufactured on a 28 NM CMOS process lithographic node
US9024657B2 (en) Architectural floorplan for a structured ASIC manufactured on a 28 NM CMOS process lithographic node or smaller
EP0139427B1 (en) Semiconductor integrated circuit device
US8941409B2 (en) Configurable storage elements
Patel et al. An architectural exploration of via patterned gate arrays
US9148151B2 (en) Configurable storage elements
US6172518B1 (en) Method of minimizing power use in programmable logic devices
JP6518647B2 (en) Fine-grained power gating in FPGA interconnects
US10855285B2 (en) Field programmable transistor arrays
Nayak et al. A framework for adding low-overhead, fine-grained power domains to CGRAs
Manohar Reconfigurable asynchronous logic
JP2012143000A (en) Mask-programmable logic device with programmable gate array site
Lin et al. Power modeling and architecture evaluation for FPGA with novel circuits for vdd programmability
von Sydow et al. Quantitative analysis of embedded FPGA-architectures for arithmetic
Lin et al. Circuits and architectures for field programmable gate array with configurable supply voltage
Wilton et al. The memory/logic interface in FPGAs with large embedded memory arrays
Paulsson et al. On-line optimization of fpga power-dissipation by exploiting run-time adaption of communication primitives
Nayak et al. Improving Energy Efficiency of CGRAs with Low-Overhead Fine-Grained Power Domains
US11362662B2 (en) Field programmable transistor arrays
Chaudhuri et al. An 8x8 run-time reconfigurable FPGA embedded in a SoC
Aken’Ova Bridging the gap between soft and hard eFPGA design
US9024683B1 (en) Method and apparatus for reducing power spikes caused by clock networks
Anderson Power optimization and prediction techniques for FPGAs
Lodi et al. Low leakage techniques for FPGAs
JP3936133B2 (en) Semiconductor integrated circuit and design method thereof