[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

Srinives et al., 2013 - Google Patents

Nanothin polyaniline film for highly sensitive chemiresistive gas sensing

Srinives et al., 2013

Document ID
9424366723042368831
Author
Srinives S
Sarkar T
Mulchandani A
Publication year
Publication venue
Electroanalysis

External Links

Snippet

This study developed a facile technique for site‐specific synthesis of nanometer‐thick polyaniline (PANI) film for fabrication of field‐effect transistor/chemiresistor sensors. The nanothin film had a thickness of 9–20 nm and was of carpet‐like morphology offering a …
Continue reading at analyticalsciencejournals.onlinelibrary.wiley.com (other versions)

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electro-chemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electro-chemical, or magnetic means by investigating the impedance of the material
    • G01N27/04Investigating or analysing materials by the use of electric, electro-chemical, or magnetic means by investigating the impedance of the material by investigating resistance
    • G01N27/12Investigating or analysing materials by the use of electric, electro-chemical, or magnetic means by investigating the impedance of the material by investigating resistance of a solid body in dependence upon absorption of a fluid; of a solid body in dependence upon reaction with a fluid, for detecting components in the fluid
    • G01N27/125Composition of the body, e.g. the composition of its sensitive layer
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electro-chemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electro-chemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/403Cells and electrode assemblies
    • G01N27/414Ion-sensitive or chemical field-effect transistors, i.e. ISFETS or CHEMFETS
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electro-chemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electro-chemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by the preceding groups
    • G01N33/0004Gaseous mixtures, e.g. polluted air
    • G01N33/0009General constructional details of gas analysers, e.g. portable test equipment
    • G01N33/0027General constructional details of gas analysers, e.g. portable test equipment concerning the detector
    • G01N33/0036Specially adapted to detect a particular component
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electro-chemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electro-chemical, or magnetic means by investigating the impedance of the material
    • G01N27/22Investigating or analysing materials by the use of electric, electro-chemical, or magnetic means by investigating the impedance of the material by investigating capacitance
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L51/00Solid state devices using organic materials as the active part, or using a combination of organic materials with other materials as the active part; Processes or apparatus specially adapted for the manufacture or treatment of such devices, or of parts thereof
    • H01L51/05Solid state devices using organic materials as the active part, or using a combination of organic materials with other materials as the active part; Processes or apparatus specially adapted for the manufacture or treatment of such devices, or of parts thereof specially adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential- jump barrier or surface barrier multistep processes for their manufacture
    • H01L51/0504Solid state devices using organic materials as the active part, or using a combination of organic materials with other materials as the active part; Processes or apparatus specially adapted for the manufacture or treatment of such devices, or of parts thereof specially adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential- jump barrier or surface barrier multistep processes for their manufacture the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or swiched, e.g. three-terminal devices
    • H01L51/0508Field-effect devices, e.g. TFTs
    • H01L51/0512Field-effect devices, e.g. TFTs insulated gate field effect transistors
    • H01L51/0545Lateral single gate single channel transistors with inverted structure, i.e. the organic semiconductor layer is formed after the gate electrode
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L51/00Solid state devices using organic materials as the active part, or using a combination of organic materials with other materials as the active part; Processes or apparatus specially adapted for the manufacture or treatment of such devices, or of parts thereof
    • H01L51/0032Selection of organic semiconducting materials, e.g. organic light sensitive or organic light emitting materials
    • H01L51/0045Carbon containing materials, e.g. carbon nanotubes, fullerenes
    • H01L51/0048Carbon nanotubes
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L51/00Solid state devices using organic materials as the active part, or using a combination of organic materials with other materials as the active part; Processes or apparatus specially adapted for the manufacture or treatment of such devices, or of parts thereof
    • H01L51/05Solid state devices using organic materials as the active part, or using a combination of organic materials with other materials as the active part; Processes or apparatus specially adapted for the manufacture or treatment of such devices, or of parts thereof specially adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential- jump barrier or surface barrier multistep processes for their manufacture
    • H01L51/0575Solid state devices using organic materials as the active part, or using a combination of organic materials with other materials as the active part; Processes or apparatus specially adapted for the manufacture or treatment of such devices, or of parts thereof specially adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential- jump barrier or surface barrier multistep processes for their manufacture the devices being controllable only by variation of the electric current supplied or the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched, e.g. two-terminal devices
    • H01L51/0595Solid state devices using organic materials as the active part, or using a combination of organic materials with other materials as the active part; Processes or apparatus specially adapted for the manufacture or treatment of such devices, or of parts thereof specially adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential- jump barrier or surface barrier multistep processes for their manufacture the devices being controllable only by variation of the electric current supplied or the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched, e.g. two-terminal devices molecular electronic devices

Similar Documents

Publication Publication Date Title
Srinives et al. Nanothin polyaniline film for highly sensitive chemiresistive gas sensing
Surya et al. Organic field effect transistors (OFETs) in environmental sensing and health monitoring: A review
Mun et al. Highly sensitive ammonia gas sensor based on single-crystal poly (3-hexylthiophene)(P3HT) organic field effect transistor
Janata et al. Conducting polymers in electronic chemical sensors
Fu et al. Biosensing near the neutrality point of graphene
Schroeder et al. Carbon nanotube chemical sensors
Byon et al. Network single-walled carbon nanotube-field effect transistors (SWNT-FETs) with increased Schottky contact area for highly sensitive biosensor applications
Zhang et al. Electrochemically functionalized single‐walled carbon nanotube gas sensor
Lee et al. Charge transfer from metallic single-walled carbon nanotube sensor arrays
Alam et al. Electrolyte-gated transistors based on conducting polymer nanowire junction arrays
Rosenblatt et al. High performance electrolyte gated carbon nanotube transistors
Mubeen et al. Sensitive detection of H2S using gold nanoparticle decorated single-walled carbon nanotubes
Roberts et al. Sorted and aligned single-walled carbon nanotube networks for transistor-based aqueous chemical sensors
Heller et al. Identifying the mechanism of biosensing with carbon nanotube transistors
Zou et al. Rational design of sub-parts per million specific gas sensors array based on metal nanoparticles decorated nanowire enhancement-mode transistors
Lee et al. Universal parameters for carbon nanotube network-based sensors: can nanotube sensors be reproducible?
Artyukhin et al. Controlled electrostatic gating of carbon nanotube FET devices
Wang et al. Carbon nanotube/polythiophene chemiresistive sensors for chemical warfare agents
Chartuprayoon et al. Wafer-scale fabrication of single polypyrrole nanoribbon-based ammonia sensor
Yang et al. Emerging and future possible strategies for enhancing 1D inorganic nanomaterials‐based electrical sensors towards explosives vapors detection
Ishikawa et al. Importance of controlling nanotube density for highly sensitive and reliable biosensors functional in physiological conditions
Marín et al. Nanomaterials based electrochemical sensing applications for safety and security
Kwon et al. Carboxylic acid-functionalized conducting-polymer nanotubes as highly sensitive nerve-agent chemiresistors
Khalap et al. Hydrogen sensing and sensitivity of palladium-decorated single-walled carbon nanotubes with defects
Kwon et al. Reversible and irreversible responses of defect-engineered graphene-based electrolyte-gated pH sensors