Liu et al., 2019 - Google Patents
Correlation identification in multimodal weibo via back propagation neural network with genetic algorithmLiu et al., 2019
- Document ID
- 9419194912747150315
- Author
- Liu M
- Guan W
- Yan J
- Hu H
- Publication year
- Publication venue
- Journal of Visual Communication and Image Representation
External Links
Snippet
The rapid development of social media services has spawned abundant user generated contents (UGC), such as Sina Weibo, which is one of the biggest Chinese microblogging platforms. In order to enhance the quality and popularity of the posted weibo (the microblog) …
- 230000001537 neural 0 title abstract description 27
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F17/00—Digital computing or data processing equipment or methods, specially adapted for specific functions
- G06F17/30—Information retrieval; Database structures therefor; File system structures therefor
- G06F17/3061—Information retrieval; Database structures therefor; File system structures therefor of unstructured textual data
- G06F17/30634—Querying
- G06F17/30657—Query processing
- G06F17/30675—Query execution
- G06F17/30684—Query execution using natural language analysis
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F17/00—Digital computing or data processing equipment or methods, specially adapted for specific functions
- G06F17/30—Information retrieval; Database structures therefor; File system structures therefor
- G06F17/3061—Information retrieval; Database structures therefor; File system structures therefor of unstructured textual data
- G06F17/30705—Clustering or classification
- G06F17/3071—Clustering or classification including class or cluster creation or modification
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F17/00—Digital computing or data processing equipment or methods, specially adapted for specific functions
- G06F17/30—Information retrieval; Database structures therefor; File system structures therefor
- G06F17/3061—Information retrieval; Database structures therefor; File system structures therefor of unstructured textual data
- G06F17/30705—Clustering or classification
- G06F17/30707—Clustering or classification into predefined classes
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F17/00—Digital computing or data processing equipment or methods, specially adapted for specific functions
- G06F17/20—Handling natural language data
- G06F17/27—Automatic analysis, e.g. parsing
- G06F17/2765—Recognition
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F17/00—Digital computing or data processing equipment or methods, specially adapted for specific functions
- G06F17/30—Information retrieval; Database structures therefor; File system structures therefor
- G06F17/30861—Retrieval from the Internet, e.g. browsers
- G06F17/30864—Retrieval from the Internet, e.g. browsers by querying, e.g. search engines or meta-search engines, crawling techniques, push systems
- G06F17/30867—Retrieval from the Internet, e.g. browsers by querying, e.g. search engines or meta-search engines, crawling techniques, push systems with filtering and personalisation
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F17/00—Digital computing or data processing equipment or methods, specially adapted for specific functions
- G06F17/30—Information retrieval; Database structures therefor; File system structures therefor
- G06F17/30286—Information retrieval; Database structures therefor; File system structures therefor in structured data stores
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06N—COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N99/00—Subject matter not provided for in other groups of this subclass
- G06N99/005—Learning machines, i.e. computer in which a programme is changed according to experience gained by the machine itself during a complete run
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06Q—DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTING PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTING PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q30/00—Commerce, e.g. shopping or e-commerce
- G06Q30/02—Marketing, e.g. market research and analysis, surveying, promotions, advertising, buyer profiling, customer management or rewards; Price estimation or determination
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06N—COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N5/00—Computer systems utilising knowledge based models
- G06N5/02—Knowledge representation
- G06N5/022—Knowledge engineering, knowledge acquisition
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06Q—DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTING PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTING PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q10/00—Administration; Management
- G06Q10/10—Office automation, e.g. computer aided management of electronic mail or groupware; Time management, e.g. calendars, reminders, meetings or time accounting
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06Q—DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTING PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTING PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q50/00—Systems or methods specially adapted for a specific business sector, e.g. utilities or tourism
- G06Q50/01—Social networking
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06N—COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N7/00—Computer systems based on specific mathematical models
- G06N7/005—Probabilistic networks
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F15/00—Digital computers in general; Data processing equipment in general
- G06F15/18—Digital computers in general; Data processing equipment in general in which a programme is changed according to experience gained by the computer itself during a complete run; Learning machines
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06K—RECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
- G06K9/00—Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Wankhade et al. | A survey on sentiment analysis methods, applications, and challenges | |
Kumar et al. | Systematic literature review of sentiment analysis on Twitter using soft computing techniques | |
Kumar et al. | Sentiment analysis of multimodal twitter data | |
Li et al. | Recursive deep learning for sentiment analysis over social data | |
Liu et al. | Correlation identification in multimodal weibo via back propagation neural network with genetic algorithm | |
Asghar et al. | A deep neural network model for the detection and classification of emotions from textual content | |
Rokade et al. | Business intelligence analytics using sentiment analysis-a survey | |
Dritsas et al. | An apache spark implementation for graph-based hashtag sentiment classification on twitter | |
Sabeeh et al. | Enhancing the fake news detection by applying effective feature selection based on semantic sources | |
Bollegala et al. | ClassiNet--Predicting missing features for short-text classification | |
Rehman et al. | User-aware multilingual abusive content detection in social media | |
He et al. | Graph-aware deep fusion networks for online spam review detection | |
Liu et al. | Identifying experts in community question answering website based on graph convolutional neural network | |
Sharaff et al. | Deep learning‐based smishing message identification using regular expression feature generation | |
Gan et al. | Microblog sentiment analysis via user representative relationship under multi-interaction hybrid neural networks | |
Mishra et al. | Evaluating Performance of Machine Leaming Techniques used in Opinion Mining | |
Devi et al. | Twitter sentiment analysis using collaborative multi layer perceptron (MLP) classifier | |
Dandannavar et al. | A proposed framework for evaluating the performance of government initiatives through sentiment analysis | |
Wunnasri et al. | Solving unbalanced data for Thai sentiment analysis | |
Pandiaraj et al. | A Comparative Study on Emotion AI using Machine Learning and Deep Learning Models | |
Ben Abdessalem Karaa et al. | [Retracted] Intelligent Recommendations of Startup Projects in Smart Cities and Smart Health Using Social Media Mining | |
Saroj et al. | Sentiment analysis on Hindi tweets during COVID‐19 pandemic | |
El Ouahabi et al. | Contribution to the Moroccan Darija sentiment analysis in social networks | |
Aich et al. | Enhancing personalized response to product queries using product reviews incorporating semantic information | |
Kang et al. | Semisupervised learning of author‐specific emotions in micro‐blogs |