[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

Li et al., 2019 - Google Patents

Modal delay and bandwidth measurements of bi-modal fibers facilitated by analytical transfer function model

Li et al., 2019

Document ID
9372530086374587284
Author
Li K
Chen X
Stone J
Li M
Publication year
Publication venue
Asia Communications and Photonics Conference

External Links

Snippet

Modal Delay and Bandwidth Measurements of Bi-Modal Fibers Facilitated by Analytical Transfer Function Model Page 1 T3A.3.pdf Asia Communications and Photonics Conference (ACP) © OSA 2019 Modal Delay and Bandwidth Measurements of Bi-Modal Fibers Facilitated …
Continue reading at opg.optica.org (other versions)

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS, OR APPARATUS
    • G02B6/00Light guides
    • G02B6/02Optical fibre with cladding with or without a coating
    • G02B6/036Optical fibre with cladding with or without a coating core or cladding comprising multiple layers
    • G02B6/03616Optical fibres characterised both by the number of different refractive index layers around the central core segment, i.e. around the innermost high index core layer, and their relative refractive index difference
    • G02B6/03638Optical fibres characterised both by the number of different refractive index layers around the central core segment, i.e. around the innermost high index core layer, and their relative refractive index difference having 3 layers only
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING STRUCTURES OR APPARATUS NOT OTHERWISE PROVIDED FOR
    • G01M11/00Testing of optical apparatus; Testing structures by optical methods not otherwise provided for
    • G01M11/30Testing of optical devices, constituted by fibre optics or optical waveguides
    • G01M11/31Testing of optical devices, constituted by fibre optics or optical waveguides with a light emitter and a light receiver being disposed at the same side of a fibre or waveguide end-face, e.g. reflectometers
    • G01M11/3109Reflectometers detecting the back-scattered light in the time-domain, e.g. OTDR
    • G01M11/3136Reflectometers detecting the back-scattered light in the time-domain, e.g. OTDR for testing of multiple fibers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING STRUCTURES OR APPARATUS NOT OTHERWISE PROVIDED FOR
    • G01M11/00Testing of optical apparatus; Testing structures by optical methods not otherwise provided for
    • G01M11/30Testing of optical devices, constituted by fibre optics or optical waveguides
    • G01M11/33Testing of optical devices, constituted by fibre optics or optical waveguides with a light emitter being disposed at one fibre or waveguide end-face, and a light receiver at the other end-face
    • G01M11/335Testing of optical devices, constituted by fibre optics or optical waveguides with a light emitter being disposed at one fibre or waveguide end-face, and a light receiver at the other end-face using two or more input wavelengths
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS, OR APPARATUS
    • G02B6/00Light guides
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS, OR APPARATUS
    • G02B6/00Light guides
    • G02B6/02Optical fibre with cladding with or without a coating
    • G02B6/02004Optical fibre with cladding with or without a coating characterised by the core effective area or mode field radius
    • G02B6/02009Large effective area or mode field radius, e.g. to reduce nonlinear effects in single mode fibres
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING STRUCTURES OR APPARATUS NOT OTHERWISE PROVIDED FOR
    • G01M11/00Testing of optical apparatus; Testing structures by optical methods not otherwise provided for
    • G01M11/30Testing of optical devices, constituted by fibre optics or optical waveguides
    • G01M11/33Testing of optical devices, constituted by fibre optics or optical waveguides with a light emitter being disposed at one fibre or waveguide end-face, and a light receiver at the other end-face
    • G01M11/332Testing of optical devices, constituted by fibre optics or optical waveguides with a light emitter being disposed at one fibre or waveguide end-face, and a light receiver at the other end-face using discrete input signals
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING STRUCTURES OR APPARATUS NOT OTHERWISE PROVIDED FOR
    • G01M11/00Testing of optical apparatus; Testing structures by optical methods not otherwise provided for
    • G01M11/30Testing of optical devices, constituted by fibre optics or optical waveguides
    • G01M11/33Testing of optical devices, constituted by fibre optics or optical waveguides with a light emitter being disposed at one fibre or waveguide end-face, and a light receiver at the other end-face
    • G01M11/333Testing of optical devices, constituted by fibre optics or optical waveguides with a light emitter being disposed at one fibre or waveguide end-face, and a light receiver at the other end-face using modulated input signals
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS, OR APPARATUS
    • G02B6/00Light guides
    • G02B6/02Optical fibre with cladding with or without a coating
    • G02B6/028Optical fibre with cladding with or without a coating with core or cladding having graded refractive index
    • G02B6/0288Multimode fibre, e.g. graded index core for compensating modal dispersion
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS, OR APPARATUS
    • G02B6/00Light guides
    • G02B6/02Optical fibre with cladding with or without a coating
    • G02B6/02295Microstructured optical fibre
    • G02B6/02314Plurality of longitudinal structures extending along optical fibre axis, e.g. holes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/25Arrangements specific to fibre transmission
    • H04B10/2507Arrangements specific to fibre transmission for the reduction or elimination of distortion or dispersion
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/07Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/11Arrangements specific to free-space transmission, i.e. transmission through air or vacuum
    • H04B10/112Line-of-sight transmission over an extended range
    • H04B10/1121One-way transmission

Similar Documents

Publication Publication Date Title
Raddatz et al. An experimental and theoretical study of the offset launch technique for the enhancement of the bandwidth of multimode fiber links
Ishigure et al. Which is a more serious factor to the bandwidth of GI POF: Differential mode attenuation or mode coupling?
CN105637337B (en) Characterize the method for multimode fiber link and the method for corresponding manufacture multimode fiber link and the method that multimode fibre is selected from multiple multimode fibres
US11768327B2 (en) Optical channel bandwidth analyzer
Li et al. Modal delay and modal bandwidth measurements of bi-modal optical fibers through a frequency domain method
JP2014206517A (en) Evaluation method for crosstalk characteristic of multicore optical fiber, and system thereof
US8977091B2 (en) Multimode optical fiber systems with adjustable chromatic modal dispersion compensation
US10122444B2 (en) Method for characterizing performance of a multimode fiber optical link and corresponding methods for fabricating a multimode optical fiber link showing improved performance and for improving performance of a multimode optical fiber link
JP6475591B2 (en) Mode dispersion coefficient measuring apparatus and mode dispersion coefficient measuring method
Chen et al. Fundamental mode transmission around 1310-nm over OM1 and OM2 multimode fibers enabled by a universal fiber modal adapter
Li et al. Modal delay and bandwidth measurements of bi-modal fibers facilitated by analytical transfer function model
Takahashi et al. Index profile design for high-bandwidth W-shaped plastic optical fiber
Lawan et al. Numerical simulation of chromatic dispersion and fiber attenuation in a single-mode optical fiber system
Ishigure et al. Mode-coupling control and new index profile of GI POF for restricted-launch condition in very-short-reach networks
Juarez et al. Graded-index standard single-mode fiber for VCSEL transmission around 850 nm
Decker et al. Statistical study of graded-index perfluorinated plastic optical fiber
EP4334696A1 (en) Frequency domain method and system for measuring modal bandwidth, chromatic dispersion, and skew of optical fibers
Yang et al. Low-loss Mode Field Adapter Using Reverse Tapering for Fundamental Mode Transmission over MMFs
Sunak Single-mode fiber measurements
Li et al. Modal delay and bandwidth measurements of few-mode fibers for short-distance communications
Li et al. Modal Delay Measurement for Few-Mode Fibers Using Frequency-Domain Complex Transfer Function
Chen et al. 25 Gb/s Two-Mode Transmission over 1-km Standard-Single Mode Fiber around 1060 nm with High Modal Bandwidth
Fall et al. Versatile graded-index multi-mode fiber for high capacity single-and multi-mode optical home network
Goriachkin et al. Algorithm for restoring the differential mode delay map from the set of pulse responses at the far end of fiber optic link
Chen et al. 400G Coherent and IMDD Transmission over 50 μm Core Multimode Fiber Links with Multiple Connector Junctions Using LP01 Mode-Matching Adapters