Li et al., 2019 - Google Patents
Modal delay and bandwidth measurements of bi-modal fibers facilitated by analytical transfer function modelLi et al., 2019
- Document ID
- 9372530086374587284
- Author
- Li K
- Chen X
- Stone J
- Li M
- Publication year
- Publication venue
- Asia Communications and Photonics Conference
External Links
Snippet
Modal Delay and Bandwidth Measurements of Bi-Modal Fibers Facilitated by Analytical
Transfer Function Model Page 1 T3A.3.pdf Asia Communications and Photonics Conference
(ACP) © OSA 2019 Modal Delay and Bandwidth Measurements of Bi-Modal Fibers Facilitated …
- 239000000835 fiber 0 title abstract description 44
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS, OR APPARATUS
- G02B6/00—Light guides
- G02B6/02—Optical fibre with cladding with or without a coating
- G02B6/036—Optical fibre with cladding with or without a coating core or cladding comprising multiple layers
- G02B6/03616—Optical fibres characterised both by the number of different refractive index layers around the central core segment, i.e. around the innermost high index core layer, and their relative refractive index difference
- G02B6/03638—Optical fibres characterised both by the number of different refractive index layers around the central core segment, i.e. around the innermost high index core layer, and their relative refractive index difference having 3 layers only
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01M—TESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING STRUCTURES OR APPARATUS NOT OTHERWISE PROVIDED FOR
- G01M11/00—Testing of optical apparatus; Testing structures by optical methods not otherwise provided for
- G01M11/30—Testing of optical devices, constituted by fibre optics or optical waveguides
- G01M11/31—Testing of optical devices, constituted by fibre optics or optical waveguides with a light emitter and a light receiver being disposed at the same side of a fibre or waveguide end-face, e.g. reflectometers
- G01M11/3109—Reflectometers detecting the back-scattered light in the time-domain, e.g. OTDR
- G01M11/3136—Reflectometers detecting the back-scattered light in the time-domain, e.g. OTDR for testing of multiple fibers
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01M—TESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING STRUCTURES OR APPARATUS NOT OTHERWISE PROVIDED FOR
- G01M11/00—Testing of optical apparatus; Testing structures by optical methods not otherwise provided for
- G01M11/30—Testing of optical devices, constituted by fibre optics or optical waveguides
- G01M11/33—Testing of optical devices, constituted by fibre optics or optical waveguides with a light emitter being disposed at one fibre or waveguide end-face, and a light receiver at the other end-face
- G01M11/335—Testing of optical devices, constituted by fibre optics or optical waveguides with a light emitter being disposed at one fibre or waveguide end-face, and a light receiver at the other end-face using two or more input wavelengths
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS, OR APPARATUS
- G02B6/00—Light guides
- G02B6/24—Coupling light guides
- G02B6/26—Optical coupling means
- G02B6/28—Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS, OR APPARATUS
- G02B6/00—Light guides
- G02B6/02—Optical fibre with cladding with or without a coating
- G02B6/02004—Optical fibre with cladding with or without a coating characterised by the core effective area or mode field radius
- G02B6/02009—Large effective area or mode field radius, e.g. to reduce nonlinear effects in single mode fibres
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01M—TESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING STRUCTURES OR APPARATUS NOT OTHERWISE PROVIDED FOR
- G01M11/00—Testing of optical apparatus; Testing structures by optical methods not otherwise provided for
- G01M11/30—Testing of optical devices, constituted by fibre optics or optical waveguides
- G01M11/33—Testing of optical devices, constituted by fibre optics or optical waveguides with a light emitter being disposed at one fibre or waveguide end-face, and a light receiver at the other end-face
- G01M11/332—Testing of optical devices, constituted by fibre optics or optical waveguides with a light emitter being disposed at one fibre or waveguide end-face, and a light receiver at the other end-face using discrete input signals
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01M—TESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING STRUCTURES OR APPARATUS NOT OTHERWISE PROVIDED FOR
- G01M11/00—Testing of optical apparatus; Testing structures by optical methods not otherwise provided for
- G01M11/30—Testing of optical devices, constituted by fibre optics or optical waveguides
- G01M11/33—Testing of optical devices, constituted by fibre optics or optical waveguides with a light emitter being disposed at one fibre or waveguide end-face, and a light receiver at the other end-face
- G01M11/333—Testing of optical devices, constituted by fibre optics or optical waveguides with a light emitter being disposed at one fibre or waveguide end-face, and a light receiver at the other end-face using modulated input signals
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS, OR APPARATUS
- G02B6/00—Light guides
- G02B6/02—Optical fibre with cladding with or without a coating
- G02B6/028—Optical fibre with cladding with or without a coating with core or cladding having graded refractive index
- G02B6/0288—Multimode fibre, e.g. graded index core for compensating modal dispersion
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS, OR APPARATUS
- G02B6/00—Light guides
- G02B6/02—Optical fibre with cladding with or without a coating
- G02B6/02295—Microstructured optical fibre
- G02B6/02314—Plurality of longitudinal structures extending along optical fibre axis, e.g. holes
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B10/00—Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
- H04B10/25—Arrangements specific to fibre transmission
- H04B10/2507—Arrangements specific to fibre transmission for the reduction or elimination of distortion or dispersion
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B10/00—Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
- H04B10/07—Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B10/00—Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
- H04B10/11—Arrangements specific to free-space transmission, i.e. transmission through air or vacuum
- H04B10/112—Line-of-sight transmission over an extended range
- H04B10/1121—One-way transmission
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Raddatz et al. | An experimental and theoretical study of the offset launch technique for the enhancement of the bandwidth of multimode fiber links | |
Ishigure et al. | Which is a more serious factor to the bandwidth of GI POF: Differential mode attenuation or mode coupling? | |
CN105637337B (en) | Characterize the method for multimode fiber link and the method for corresponding manufacture multimode fiber link and the method that multimode fibre is selected from multiple multimode fibres | |
US11768327B2 (en) | Optical channel bandwidth analyzer | |
Li et al. | Modal delay and modal bandwidth measurements of bi-modal optical fibers through a frequency domain method | |
JP2014206517A (en) | Evaluation method for crosstalk characteristic of multicore optical fiber, and system thereof | |
US8977091B2 (en) | Multimode optical fiber systems with adjustable chromatic modal dispersion compensation | |
US10122444B2 (en) | Method for characterizing performance of a multimode fiber optical link and corresponding methods for fabricating a multimode optical fiber link showing improved performance and for improving performance of a multimode optical fiber link | |
JP6475591B2 (en) | Mode dispersion coefficient measuring apparatus and mode dispersion coefficient measuring method | |
Chen et al. | Fundamental mode transmission around 1310-nm over OM1 and OM2 multimode fibers enabled by a universal fiber modal adapter | |
Li et al. | Modal delay and bandwidth measurements of bi-modal fibers facilitated by analytical transfer function model | |
Takahashi et al. | Index profile design for high-bandwidth W-shaped plastic optical fiber | |
Lawan et al. | Numerical simulation of chromatic dispersion and fiber attenuation in a single-mode optical fiber system | |
Ishigure et al. | Mode-coupling control and new index profile of GI POF for restricted-launch condition in very-short-reach networks | |
Juarez et al. | Graded-index standard single-mode fiber for VCSEL transmission around 850 nm | |
Decker et al. | Statistical study of graded-index perfluorinated plastic optical fiber | |
EP4334696A1 (en) | Frequency domain method and system for measuring modal bandwidth, chromatic dispersion, and skew of optical fibers | |
Yang et al. | Low-loss Mode Field Adapter Using Reverse Tapering for Fundamental Mode Transmission over MMFs | |
Sunak | Single-mode fiber measurements | |
Li et al. | Modal delay and bandwidth measurements of few-mode fibers for short-distance communications | |
Li et al. | Modal Delay Measurement for Few-Mode Fibers Using Frequency-Domain Complex Transfer Function | |
Chen et al. | 25 Gb/s Two-Mode Transmission over 1-km Standard-Single Mode Fiber around 1060 nm with High Modal Bandwidth | |
Fall et al. | Versatile graded-index multi-mode fiber for high capacity single-and multi-mode optical home network | |
Goriachkin et al. | Algorithm for restoring the differential mode delay map from the set of pulse responses at the far end of fiber optic link | |
Chen et al. | 400G Coherent and IMDD Transmission over 50 μm Core Multimode Fiber Links with Multiple Connector Junctions Using LP01 Mode-Matching Adapters |