Liu et al., 2023 - Google Patents
Long–short-term memory encoder–decoder with regularized hidden dynamics for fault detection in industrial processesLiu et al., 2023
View PDF- Document ID
- 9063558530749131794
- Author
- Liu Y
- Young R
- Jafarpour B
- Publication year
- Publication venue
- Journal of Process Control
External Links
Snippet
The ability of recurrent neural networks (RNN) to model nonlinear dynamics of high dimensional process data has enabled data-driven RNN-based fault detection algorithms. Previous studies have focused on detecting faults by identifying the discrepancies in data …
Classifications
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B23/00—Testing or monitoring of control systems or parts thereof
- G05B23/02—Electric testing or monitoring
- G05B23/0205—Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults
- G05B23/0218—Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults characterised by the fault detection method dealing with either existing or incipient faults
- G05B23/0224—Process history based detection method, e.g. whereby history implies the availability of large amounts of data
- G05B23/024—Quantitative history assessment, e.g. mathematical relationships between available data; Functions therefor; Principal component analysis [PCA]; Partial least square [PLS]; Statistical classifiers, e.g. Bayesian networks, linear regression or correlation analysis; Neural networks
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B23/00—Testing or monitoring of control systems or parts thereof
- G05B23/02—Electric testing or monitoring
- G05B23/0205—Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults
- G05B23/0218—Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults characterised by the fault detection method dealing with either existing or incipient faults
- G05B23/0243—Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults characterised by the fault detection method dealing with either existing or incipient faults model based detection method, e.g. first-principles knowledge model
- G05B23/0254—Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults characterised by the fault detection method dealing with either existing or incipient faults model based detection method, e.g. first-principles knowledge model based on a quantitative model, e.g. mathematical relationships between inputs and outputs; functions: observer, Kalman filter, residual calculation, Neural Networks
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B13/00—Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion
- G05B13/02—Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric
- G05B13/0265—Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric the criterion being a learning criterion
- G05B13/027—Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric the criterion being a learning criterion using neural networks only
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06N—COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N99/00—Subject matter not provided for in other groups of this subclass
- G06N99/005—Learning machines, i.e. computer in which a programme is changed according to experience gained by the machine itself during a complete run
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B13/00—Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion
- G05B13/02—Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric
- G05B13/04—Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric involving the use of models or simulators
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06N—COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computer systems based on biological models
- G06N3/02—Computer systems based on biological models using neural network models
- G06N3/08—Learning methods
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06N—COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N5/00—Computer systems utilising knowledge based models
- G06N5/02—Knowledge representation
- G06N5/022—Knowledge engineering, knowledge acquisition
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B17/00—Systems involving the use of models or simulators of said systems
- G05B17/02—Systems involving the use of models or simulators of said systems electric
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06N—COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N7/00—Computer systems based on specific mathematical models
- G06N7/005—Probabilistic networks
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06N—COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N5/00—Computer systems utilising knowledge based models
- G06N5/04—Inference methods or devices
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F17/00—Digital computing or data processing equipment or methods, specially adapted for specific functions
- G06F17/10—Complex mathematical operations
- G06F17/18—Complex mathematical operations for evaluating statistical data, e.g. average values, frequency distributions, probability functions, regression analysis
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06K—RECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
- G06K9/00—Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
- G06K9/62—Methods or arrangements for recognition using electronic means
- G06K9/6217—Design or setup of recognition systems and techniques; Extraction of features in feature space; Clustering techniques; Blind source separation
- G06K9/6232—Extracting features by transforming the feature space, e.g. multidimensional scaling; Mappings, e.g. subspace methods
- G06K9/6247—Extracting features by transforming the feature space, e.g. multidimensional scaling; Mappings, e.g. subspace methods based on an approximation criterion, e.g. principal component analysis
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Wen et al. | A generalized remaining useful life prediction method for complex systems based on composite health indicator | |
Zhang et al. | Transfer learning using deep representation regularization in remaining useful life prediction across operating conditions | |
Xu et al. | Physics-informed machine learning for reliability and systems safety applications: State of the art and challenges | |
Wu et al. | Process topology convolutional network model for chemical process fault diagnosis | |
Behera et al. | Multiscale deep bidirectional gated recurrent neural networks based prognostic method for complex non-linear degradation systems | |
Gao et al. | A neural network-based joint prognostic model for data fusion and remaining useful life prediction | |
Zhao et al. | Critical-to-fault-degradation variable analysis and direction extraction for online fault prognostic | |
Ye et al. | Health condition monitoring of machines based on long short-term memory convolutional autoencoder | |
Zhu et al. | Information concentrated variational auto-encoder for quality-related nonlinear process monitoring | |
Liu et al. | Long–short-term memory encoder–decoder with regularized hidden dynamics for fault detection in industrial processes | |
Finkeldey et al. | Real-time prediction of process forces in milling operations using synchronized data fusion of simulation and sensor data | |
Koutroulis et al. | Constructing robust health indicators from complex engineered systems via anticausal learning | |
Zhou et al. | Aero-engine prognosis strategy based on multi-scale feature fusion and multi-task parallel learning | |
Boujamza et al. | Attention-based LSTM for remaining useful life estimation of aircraft engines | |
Chen et al. | Multi-lag and multi-type temporal causality inference and analysis for industrial process fault diagnosis | |
Yuan et al. | Multiscale dynamic feature learning for quality prediction based on hierarchical sequential generative network | |
Wang et al. | A spatiotemporal feature learning-based RUL estimation method for predictive maintenance | |
Zhang et al. | A systematic nonstationary causality analysis framework for root cause diagnosis of faults in manufacturing processes | |
Xu et al. | High-accuracy health prediction of sensor systems using improved relevant vector-machine ensemble regression | |
Shokry et al. | Dynamic kriging based fault detection and diagnosis approach for nonlinear noisy dynamic processes | |
Liu et al. | Graph attention network with Granger causality map for fault detection and root cause diagnosis | |
Li et al. | A separate modeling approach to noisy displacement prediction of concrete dams via improved deep learning with frequency division | |
Panjapornpon et al. | Explainable deep transfer learning for energy efficiency prediction based on uncertainty detection and identification | |
Qin et al. | Root cause analysis of industrial faults based on binary extreme gradient boosting and temporal causal discovery network | |
Zhang et al. | An enhanced temporal algorithm-coupled optimized adaptive sparse principal component analysis methodology for fault diagnosis of chemical processes |