Hiraki et al., 2019 - Google Patents
Integrated DFB Laser Diode and High-efficiency Mach-Zehnder Modulator using Membrane III-V Semiconductors on Si Photonics PlatformHiraki et al., 2019
- Document ID
- 9020185539631941330
- Author
- Hiraki T
- Aihara T
- Fujii T
- Takeda K
- Kakitsuka T
- Tsuchizawa T
- Matsuo S
- Publication year
- Publication venue
- 2019 IEEE International Electron Devices Meeting (IEDM)
External Links
Snippet
We have demonstrated heterogeneous integration of a distributed feedback laser diode (LD) and high-efficiency InGaAsP Mach-Zehnder modulator (MZM) on Si waveguide circuits. Epitaxial regrowth on directly bonded III-V layer is a key to integrate III-V active materials …
- 230000000051 modifying 0 title abstract description 13
Classifications
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01S—DEVICES USING STIMULATED EMISSION
- H01S5/00—Semiconductor lasers
- H01S5/02—Structural details or components not essential to laser action
- H01S5/026—Monolithically integrated components, e.g. waveguides, monitoring photo-detectors, drivers
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01S—DEVICES USING STIMULATED EMISSION
- H01S5/00—Semiconductor lasers
- H01S5/30—Structure or shape of the active region; Materials used for the active region
- H01S5/34—Structure or shape of the active region; Materials used for the active region comprising quantum well, or supperlattice structures, e.g. single quantum well lasers (SQW lasers), multiple quantum well lasers (MQW lasers), graded index separate confinement hetrostructure lasers (GRINSCH lasers)
- H01S5/343—Structure or shape of the active region; Materials used for the active region comprising quantum well, or supperlattice structures, e.g. single quantum well lasers (SQW lasers), multiple quantum well lasers (MQW lasers), graded index separate confinement hetrostructure lasers (GRINSCH lasers) in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser
- H01S5/34306—Structure or shape of the active region; Materials used for the active region comprising quantum well, or supperlattice structures, e.g. single quantum well lasers (SQW lasers), multiple quantum well lasers (MQW lasers), graded index separate confinement hetrostructure lasers (GRINSCH lasers) in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser emitting light at a wavelength longer than 1000nm, e.g. InP based 1300 and 1500nm lasers
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01S—DEVICES USING STIMULATED EMISSION
- H01S5/00—Semiconductor lasers
- H01S5/10—Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
- H01S5/1028—Coupling to elements in the cavity, e.g. coupling to waveguides adjacent the active region, e.g. forward coupled [DFC] structures
- H01S5/1032—Coupling to elements comprising an optical axis that is not aligned with the optical axis of the active region
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01S—DEVICES USING STIMULATED EMISSION
- H01S5/00—Semiconductor lasers
- H01S5/30—Structure or shape of the active region; Materials used for the active region
- H01S5/32—Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures
- H01S5/323—Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures in AIIIBV compounds, e.g. alGaAs-laser, InP-based laser
- H01S5/3235—Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures in AIIIBV compounds, e.g. alGaAs-laser, InP-based laser emitting light at a wavelength longer than 1000 nm, e.g. InP-based 1300 nm and 1500 nm lasers
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01S—DEVICES USING STIMULATED EMISSION
- H01S5/00—Semiconductor lasers
- H01S5/10—Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
- H01S5/12—Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region the resonator having a periodic structure, e.g. in distributed feed-back lasers (DFB-lasers)
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01S—DEVICES USING STIMULATED EMISSION
- H01S5/00—Semiconductor lasers
- H01S5/20—Structure or shape of the semi-conductor body to guide the optical wave; Confining structures perpendicular to the optical axis, e.g. index- or gain-guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
- H01S5/22—Structure or shape of the semi-conductor body to guide the optical wave; Confining structures perpendicular to the optical axis, e.g. index- or gain-guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS, OR APPARATUS
- G02B6/00—Light guides
- G02B6/10—Light guides of the optical waveguide type
- G02B6/12—Light guides of the optical waveguide type of the integrated circuit kind
- G02B6/122—Light guides of the optical waveguide type of the integrated circuit kind basic optical elements, e.g. light-guiding paths
- G02B6/125—Bends, branchings or intersections
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS, OR APPARATUS
- G02B6/00—Light guides
- G02B6/10—Light guides of the optical waveguide type
- G02B6/12—Light guides of the optical waveguide type of the integrated circuit kind
- G02B2006/12166—Manufacturing methods
- G02B2006/12195—Tapering
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS, OR APPARATUS
- G02B6/00—Light guides
- G02B6/10—Light guides of the optical waveguide type
- G02B6/12—Light guides of the optical waveguide type of the integrated circuit kind
- G02B6/13—Integrated optical circuits characterised by the manufacturing method
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01S—DEVICES USING STIMULATED EMISSION
- H01S5/00—Semiconductor lasers
- H01S5/06—Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
- H01S5/062—Arrangements for controlling the laser output parameters, e.g. by operating on the active medium by varying the potential of the electrodes
- H01S5/0625—Arrangements for controlling the laser output parameters, e.g. by operating on the active medium by varying the potential of the electrodes in multi-section lasers
- H01S5/06255—Controlling the frequency of the radiation
- H01S5/06256—Controlling the frequency of the radiation with DBR-structure
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS, OR APPARATUS
- G02B6/00—Light guides
- G02B6/10—Light guides of the optical waveguide type
- G02B6/12—Light guides of the optical waveguide type of the integrated circuit kind
- G02B6/12004—Combinations of two or more optical elements
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS, OR APPARATUS
- G02B6/00—Light guides
- G02B6/10—Light guides of the optical waveguide type
- G02B6/12—Light guides of the optical waveguide type of the integrated circuit kind
- G02B2006/12083—Constructional arrangements
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS, OR APPARATUS
- G02B6/00—Light guides
- G02B6/10—Light guides of the optical waveguide type
- G02B6/12—Light guides of the optical waveguide type of the integrated circuit kind
- G02B6/12002—Three-dimensional structures
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5897414B2 (en) | Optical device manufacturing method | |
Han et al. | Selectively grown III-V lasers for integrated Si-photonics | |
Hiraki et al. | Membrane InGaAsP Mach–Zehnder modulator integrated with optical amplifier on Si platform | |
Aihara et al. | Membrane III-V/Si DFB laser using uniform grating and width-modulated Si waveguide | |
Hiraki et al. | Integration of a high-efficiency Mach-Zehnder modulator with a DFB laser using membrane InP-based devices on a Si photonics platform | |
Cheung et al. | Highly efficient chip-scale III-V/silicon hybrid optical amplifiers | |
Morthier et al. | InP microdisk lasers integrated on Si for optical interconnects | |
Aihara et al. | Membrane buried-heterostructure DFB laser with an optically coupled III-V/Si waveguide | |
CN1658453A (en) | Hybrid Integrated Tunable Semiconductor Lasers | |
Aihara et al. | Lateral current injection membrane buried heterostructure lasers integrated on 200-nm-thick Si waveguide | |
Hiraki et al. | 50-GHz-bandwidth membrane InGaAsP electro-absorption modulator on Si platform | |
KR20080052233A (en) | Laser element with integrated optical mode size converter | |
Maeda et al. | Micro-transfer-printed InP-based membrane photonic devices on thin-film lithium niobate platform | |
Hiraki et al. | Integrated DFB Laser Diode and High-efficiency Mach-Zehnder Modulator using Membrane III-V Semiconductors on Si Photonics Platform | |
Grenouillet et al. | Hybrid integration for silicon photonics applications | |
Aihara et al. | Mach-zehnder modulator using membrane InGaAsP phase shifters and SOAs inside interferometer arms on Si photonics platform | |
Van Roijen et al. | Over 15 dB gain from a monolithically integrated optical switch with an amplifier | |
Matsuo | High-performance lasers on InP-SOI platform | |
He et al. | Ultra-compact coupling structures for heterogeneously integrated silicon lasers | |
Hiraki et al. | Heterogeneously Integrated Mach-Zehnder Modulator Using Membrane InGaAsP Phase Shifter and Hydrogen-free SiN Waveguide on Si Platform | |
Aihara et al. | 56-Gbit/s operations of Mach-Zehnder modulators using 300-µm-long membrane InGaAsP phase shifters and SiN waveguides on Si | |
Ryu et al. | 1.55-μm spot-size converter integrated laser diode with conventional buried-heterostructure laser process | |
Matsuo et al. | Membrane InP-based photonics devices on Si | |
Aihara et al. | Membrane III-V/Si DFB laser with width modulated silicon waveguide for narrowing linewdth | |
Maeda et al. | Si-waveguide-coupled membrane InGaAsP-multiple-quantum-well photodetector with large bandwidth at high optical input power |