Senthilkumar et al., 2015 - Google Patents
Parametric investigation of process parameters for laser cutting processSenthilkumar et al., 2015
View PDF- Document ID
- 8985159453120188564
- Author
- Senthilkumar V
- Periyasamy N
- Manigandan A
- Publication year
- Publication venue
- International Journal of Innovative Research in Science, Engineering and Technology
External Links
Snippet
Laser cutting is energy based unconventional process used to cut complicated shapes of various types of materials. The objective of this paper is to investigate the effects of parameters associated with CO2 laser cutting of Aluminium plate of 6 mm thickness. The …
- 238000003698 laser cutting 0 title abstract description 22
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K26/00—Working by laser beam, e.g. welding, cutting or boring
- B23K26/02—Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
- B23K26/06—Shaping the laser beam, e.g. by masks or multi-focusing
- B23K26/062—Shaping the laser beam, e.g. by masks or multi-focusing by direct control of the laser beam
- B23K26/0626—Energy control of the laser beam
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K26/00—Working by laser beam, e.g. welding, cutting or boring
- B23K26/02—Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
- B23K26/04—Automatically aligning, aiming or focusing the laser beam, e.g. using the back-scattered light
- B23K26/046—Automatically focusing the laser beam
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K26/00—Working by laser beam, e.g. welding, cutting or boring
- B23K26/02—Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
- B23K26/06—Shaping the laser beam, e.g. by masks or multi-focusing
- B23K26/0665—Shaping the laser beam, e.g. by masks or multi-focusing by beam condensation on the workpiece, e.g. for focusing
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K26/00—Working by laser beam, e.g. welding, cutting or boring
- B23K26/02—Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
- B23K26/06—Shaping the laser beam, e.g. by masks or multi-focusing
- B23K26/064—Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms
- B23K26/0652—Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms comprising prisms
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K26/00—Working by laser beam, e.g. welding, cutting or boring
- B23K26/02—Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
- B23K26/06—Shaping the laser beam, e.g. by masks or multi-focusing
- B23K26/0604—Shaping the laser beam, e.g. by masks or multi-focusing by a combination of beams
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K26/00—Working by laser beam, e.g. welding, cutting or boring
- B23K26/36—Removing material
- B23K26/38—Removing material by boring or cutting
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K26/00—Working by laser beam, e.g. welding, cutting or boring
- B23K26/02—Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
- B23K26/03—Observing, e.g. monitoring, the workpiece
- B23K26/032—Observing, e.g. monitoring, the workpiece using optical means
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K26/00—Working by laser beam, e.g. welding, cutting or boring
- B23K26/36—Removing material
- B23K26/40—Removing material taking account of the properties of the material involved
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K26/00—Working by laser beam, e.g. welding, cutting or boring
- B23K26/08—Devices involving relative movement between laser beam and workpiece
- B23K26/083—Devices involving movement of the workpiece in at least one axial direction
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Senthilkumar | Laser cutting process-A Review | |
Chaja et al. | Influence of laser spot size and shape on ablation efficiency using ultrashort pulse laser system | |
Hashemzadeh et al. | The application of specific point energy analysis to laser cutting with 1 μm laser radiation | |
Kibria et al. | Investigation and analysis on pulsed Nd: YAG laser micro-turning process of aluminium oxide (Al 2 O 3) ceramic at various laser defocusing conditions | |
Senthilkumar et al. | Parametric investigation of process parameters for laser cutting process | |
Zeilmann et al. | Effects of cutting power, speed and assist gas pressure parameters on the surface integrity cut by laser | |
Campbell et al. | Single-pulse femtosecond laser machining of glass | |
Wandera et al. | Cutting of stainless steel with fiber and disk laser | |
Priyadarshini et al. | Multi characteristics optimization of laser drilling process parameter using fuzzy-topsis method | |
Scintilla et al. | A comparative study on fusion cutting with disk and CO2 lasers | |
Pramanik et al. | A parametric study of kerf deviation in fiber laser micro cutting on Ti6Al4V Superalloy | |
Begic-Hajdarevic et al. | Multi-response optimization of laser cutting parameters using grey relational analysis | |
Wadekar et al. | Effect of process parameters on laser cutting process: a review | |
Mladenovic et al. | Investigation of the laser engraving of AISI 304 stainless steel using a response-surface methodology | |
Noor et al. | Effect of process parameters on the laser microdrilling performance of stainless steel, aluminium and copper | |
Warhanek et al. | Picosecond pulsed laser processing of polycrystalline diamond and cubic boron nitride composite materials | |
Varsi et al. | Influence of Resolution on Surface Roughness During CO2 Laser Beam Machining | |
Wyszyński et al. | Laser beam machining of polycrystalline diamond for cutting tool manufacturing | |
Kibria et al. | Parametric study and optimization of Nd: YAG laser micro-turning process of different grade of alumina ceramics based on Taguchi methodology | |
Khurana et al. | A review-experimental study of impact of laser parameters on laser beam machining and simulation | |
Anghel et al. | A review on laser beam cutting | |
Patel et al. | Experimental Analysis of Laser Cutting Machine | |
Kibria et al. | Pulsed Nd: YAG laser micro-turning of Alumina to study the effect of overlap factors on surface roughness performance | |
Peng et al. | Parameter Optimization of Fiber Laser Cutting of Stainless Steel using Taguchi Method | |
Charee et al. | Underwater Laser Micromilling of Commercially-Pure Titanium Using Different Scan Overlaps |