[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

Im et al., 2021 - Google Patents

PrBa0. 5Sr0. 5Co1. 5Fe0. 5O5+ δ composite cathode in protonic ceramic fuel cells

Im et al., 2021

Document ID
89663139821464451
Author
Im S
Lee J
Ji H
Publication year
Publication venue
Journal of the Korean Ceramic Society

External Links

Snippet

The need for high performance of protonic ceramic fuel cells (PCFCs) has created significant interest in highly active cathode materials. Since a major charge carrier in PCFCs is proton, the use of triple conducting oxide (TCO) materials, in which oxygen ion, hole, and proton can …
Continue reading at link.springer.com (other versions)

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GASES [GHG] EMISSION, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/50Fuel cells
    • Y02E60/52Fuel cells characterised by type or design
    • Y02E60/521Proton Exchange Membrane Fuel Cells [PEMFC]
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M8/124Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte
    • H01M8/1246Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte the electrolyte consisting of oxides
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GASES [GHG] EMISSION, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/50Fuel cells
    • Y02E60/52Fuel cells characterised by type or design
    • Y02E60/525Solid Oxide Fuel Cells [SOFC]
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8878Treatment steps after deposition of the catalytic active composition or after shaping of the electrode being free-standing body
    • H01M4/8882Heat treatment, e.g. drying, baking
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/9016Oxides, hydroxides or oxygenated metallic salts
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M2008/1293Fuel cells with solid oxide electrolytes
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M8/1213Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the electrode/electrolyte combination or the supporting material
    • H01M8/1226Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the electrode/electrolyte combination or the supporting material characterised by the supporting layer
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0068Solid electrolytes inorganic
    • H01M2300/0071Oxides
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/9041Metals or alloys
    • H01M4/905Metals or alloys specially used in fuel cell operating at high temperature, e.g. SOFC
    • H01M4/9066Metals or alloys specially used in fuel cell operating at high temperature, e.g. SOFC of metal-ceramic composites or mixtures, e.g. cermets
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors

Similar Documents

Publication Publication Date Title
Chen et al. An in situ formed, dual‐phase cathode with a highly active catalyst coating for protonic ceramic fuel cells
Cao et al. High performance low-temperature tubular protonic ceramic fuel cells based on barium cerate-zirconate electrolyte
Nguyen et al. Preparation and evaluation of BaZr0. 1Ce0. 7Y0. 1Yb0. 1O3− δ (BZCYYb) electrolyte and BZCYYb-based solid oxide fuel cells
Liu et al. Oxygen reduction at sol–gel derived La0. 8Sr0. 2Co0. 8Fe0. 2O3 cathodes
Peña-Martínez et al. Performance of XSCoF (X= Ba, La and Sm) and LSCrX′(X′= Mn, Fe and Al) perovskite-structure materials on LSGM electrolyte for IT-SOFC
Taillades et al. High performance anode-supported proton ceramic fuel cell elaborated by wet powder spraying
Hirabayashi et al. Improvement of a reduction-resistant Ce0. 8Sm0. 2O1. 9 electrolyte by optimizing a thin BaCe1− xSmxO3− α layer for intermediate-temperature SOFCs
Zhu et al. High-performance anode-supported solid oxide fuel cells based on nickel-based cathode and Ba (Zr0. 1Ce0. 7Y0. 2) O3− δ electrolyte
Shimada et al. Effect of Ni diffusion into BaZr0. 1Ce0. 7Y0. 1Yb0. 1O3− δ electrolyte during high temperature co-sintering in anode-supported solid oxide fuel cells
Liu et al. Preparation and characterization of graded cathode La0. 6Sr0. 4Co0. 2Fe0. 8O3− δ
Zhou et al. Evaluation of LaSr2Fe2CrO9-δ as a potential electrode for symmetrical solid oxide fuel cells
Taillades et al. Intermediate temperature anode‐supported fuel cell based on BaCe0. 9Y0. 1O3 electrolyte with novel Pr2NiO4 cathode
Lu et al. A cobalt-free Sm0. 5Sr0. 5FeO3− δ–BaZr0. 1Ce0. 7Y0. 2O3− δ composite cathode for proton-conducting solid oxide fuel cells
Rehman et al. Effect of GDC addition method on the properties of LSM–YSZ composite cathode support for solid oxide fuel cells
Qian et al. Improved performance of solid oxide fuel cell with pulsed laser deposited thin film ceria–zirconia bilayer electrolytes on modified anode substrate
Im et al. PrBa0. 5Sr0. 5Co1. 5Fe0. 5O5+ δ composite cathode in protonic ceramic fuel cells
Zhao et al. Novel layered perovskite oxide PrBaCuCoO5+ δ as a potential cathode for intermediate-temperature solid oxide fuel cells
Huang et al. Comparison of the electrochemical properties of impregnated and functionally gradient LaNi0. 6Fe0. 4O3–Gd0. 2Ce0. 8O2 composite cathodes for Solid Oxide Fuel Cell
Kim et al. Naturally diffused sintering aid for highly conductive bilayer electrolytes in solid oxide cells
Fung et al. Cathode-supported SOFC using a highly conductive lanthanum aluminate-based electrolyte
Yang et al. Fabrication and characterization of a Sm0. 2Ce0. 8O1. 9 electrolyte film by the spin-coating method for a low-temperature anode-supported solid oxide fuel cells
Choi et al. Development of solid oxide cells by co-sintering of GDC diffusion barriers with LSCF air electrode
Yu et al. Superior Durability and Activity of a Benchmark Triple‐Conducting Cathode by Tuning Thermo‐Mechanical Compatibility for Protonic Ceramic Fuel Cells
Zhang et al. High-performance low-temperature solid oxide fuel cells using thin proton-conducting electrolyte with novel cathode
Lin et al. Simple solid oxide fuel cells