Guo et al., 2010 - Google Patents
White-light emission from a single-emitting-component Ca 9 Gd (PO 4) 7: Eu 2+, Mn2+ phosphor with tunable luminescent properties for near-UV light-emitting diodesGuo et al., 2010
View PDF- Document ID
- 8907194912725932223
- Author
- Guo N
- You H
- Song Y
- Yang M
- Liu K
- Zheng Y
- Huang Y
- Zhang H
- Publication year
- Publication venue
- Journal of Materials Chemistry
External Links
Snippet
Ca9Gd (PO4) 7 and Ca9Gd (PO4) 7: xEu2+, yMn2+ were synthesized by solid-state reaction. The refinement confirmed that Ca9Gd (PO4) 7 belongs to space group R3c (No. 161) with unit cell parameters a= 10.4526 Å, c= 37.3769 Å, V= 3536.61 Å3, and Z= 6. Upon …
- OAICVXFJPJFONN-UHFFFAOYSA-N phosphorus   [P] 0 title description 22
Classifications
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; MISCELLANEOUS COMPOSITIONS; MISCELLANEOUS APPLICATIONS OF MATERIALS
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K11/00—Luminescent, e.g. electroluminescent, chemiluminescent materials
- C09K11/08—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
- C09K11/77—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
- C09K11/7728—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals comprising europium
- C09K11/7734—Aluminates; Silicates
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; MISCELLANEOUS COMPOSITIONS; MISCELLANEOUS APPLICATIONS OF MATERIALS
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K11/00—Luminescent, e.g. electroluminescent, chemiluminescent materials
- C09K11/08—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
- C09K11/77—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
- C09K11/7766—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing two or more rare earth metals
- C09K11/7777—Phosphates
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02B—INDEXING SCHEME RELATING TO CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. INCLUDING HOUSING AND APPLIANCES OR RELATED END-USER APPLICATIONS
- Y02B20/00—Energy efficient lighting technologies
- Y02B20/16—Gas discharge lamps, e.g. fluorescent lamps, high intensity discharge lamps [HID] or molecular radiators
- Y02B20/18—Low pressure and fluorescent lamps
- Y02B20/181—Fluorescent powders
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; MISCELLANEOUS COMPOSITIONS; MISCELLANEOUS APPLICATIONS OF MATERIALS
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K11/00—Luminescent, e.g. electroluminescent, chemiluminescent materials
- C09K11/08—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
- C09K11/0883—Arsenides; Nitrides; Phosphides
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; MISCELLANEOUS COMPOSITIONS; MISCELLANEOUS APPLICATIONS OF MATERIALS
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K11/00—Luminescent, e.g. electroluminescent, chemiluminescent materials
- C09K11/08—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
- C09K11/64—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing aluminium
- C09K11/647—Borates
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H01L33/00—Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L33/48—Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
- H01L33/50—Wavelength conversion elements
- H01L33/501—Wavelength conversion elements characterised by the materials, e.g. binder
- H01L33/502—Wavelength conversion materials
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Guo et al. | White-light emission from a single-emitting-component Ca 9 Gd (PO 4) 7: Eu 2+, Mn2+ phosphor with tunable luminescent properties for near-UV light-emitting diodes | |
Jia et al. | Synthesis and photoluminescence properties of Ce 3+ and Eu 2+-activated Ca 7 Mg (SiO 4) 4 phosphors for solid state lighting | |
Liu et al. | A novel single-composition trichromatic white-emitting Sr 3.5 Y 6.5 O 2 (PO 4) 1.5 (SiO 4) 4.5: Ce 3+/Tb 3+/Mn 2+ phosphor: synthesis, luminescent properties and applications for white LEDs | |
Li et al. | Tunable luminescence of Ce 3+/Mn 2+-coactivated Ca 2 Gd 8 (SiO 4) 6 O 2 through energy transfer and modulation of excitation: potential single-phase white/yellow-emitting phosphors | |
Zhang et al. | Single-phased white-light-emitting NaCaBO 3: Ce 3+, Tb 3+, Mn 2+ phosphors for LED applications | |
Guo et al. | A tunable single-component warm white-light Sr 3 Y (PO 4) 3: Eu 2+, Mn 2+ phosphor for white-light emitting diodes | |
Han et al. | Near UV-pumped yellow-emitting Eu 2+-doped Na 3 K (Si 1− x Al x) 8 O 16±δ phosphor for white-emitting LEDs | |
Guo et al. | A tunable warm-white-light Sr 3 Gd (PO 4) 3: Eu 2+, Mn 2+ phosphor system for LED-based solid-state lighting | |
Jiao et al. | Sr 3 GdNa (PO 4) 3 F: Eu 2+, Mn 2+: a potential color tunable phosphor for white LEDs | |
Xia et al. | Ca 2 Al 3 O 6 F: Eu 2+: a green-emitting oxyfluoride phosphor for white light-emitting diodes | |
Shang et al. | Luminescence and energy transfer properties of Ca 8 Gd 2 (PO 4) 6 O 2: A (A= Ce 3+/Eu 2+/Tb 3+/Dy 3+/Mn 2+) phosphors | |
Wang et al. | BaZrSi 3 O 9: Eu 2+: a cyan-emitting phosphor with high quantum efficiency for white light-emitting diodes | |
Guo et al. | A Eu 2+ and Mn 2+-coactivated fluoro-apatite-structure Ca 6 Y 2 Na 2 (PO 4) 6 F 2 as a standard white-emitting phosphor via energy transfer | |
Xia et al. | Preparation and luminescence properties of Ce 3+ and Ce 3+/Tb 3+-activated Y 4 Si 2 O 7 N 2 phosphors | |
Jia et al. | Single-phased white-light-emitting Ca 4 (PO 4) 2 O: Ce 3+, Eu 2+ phosphors based on energy transfer | |
Jiang et al. | Tri-chromatic white-light emission from a single-phase Ca 9 Sc (PO 4) 7: Eu 2+, Tb 3+, Mn 2+ phosphor for LED applications | |
Huang et al. | Near UV-pumped yellow-emitting Sr 8 MgSc (PO 4) 7: Eu 2+ phosphor for white-light LEDs with excellent color rendering index | |
Wang et al. | Crystal structure, luminescence properties, energy transfer and thermal properties of a novel color-tunable, white light-emitting phosphor Ca 9− x− y Ce (PO 4) 7: x Eu 2+, y Mn 2+ | |
Hou et al. | Red, green and blue emissions coexistence in white-light-emitting Ca 11 (SiO 4) 4 (BO 3) 2: Ce 3+, Eu 2+, Eu 3+ phosphor | |
Guo et al. | A direct warm-white-emitting Sr 3 Sc (PO 4) 3: Eu 2+, Mn 2+ phosphor with tunable photoluminescence via efficient energy transfer | |
Lü et al. | Tunable white light of a Ce 3+, Tb 3+, Mn 2+ triply doped Na 2 Ca 3 Si 2 O 8 phosphor for high colour-rendering white LED applications: tunable luminescence and energy transfer | |
Liang et al. | A novel tunable blue-green-emitting CaGdGaAl 2 O 7: Ce 3+, Tb 3+ phosphor via energy transfer for UV-excited white LEDs | |
Wang et al. | Luminescence, energy transfer and tunable color of Ce 3+, Dy 3+/Tb 3+ doped BaZn 2 (PO 4) 2 phosphors | |
Jia et al. | Mg 1.5 Lu 1.5 Al 3.5 Si 1.5 O 12: Ce 3+, Mn 2+: A novel garnet phosphor with adjustable emission color for blue light-emitting diodes | |
Wang et al. | A white emitting phosphor BaMg2 (PO4) 2: Ce3+, Mn2+, Tb3+: luminescence and energy transfer |