Weber, 1973 - Google Patents
Waveguide dye lasers prepared by diffusionWeber, 1973
- Document ID
- 8843346292107443674
- Author
- Weber J
- Publication year
- Publication venue
- Optics Communications
External Links
Snippet
WAVEGUIDE DYE LASERS PREPARED BY DIFFUSION J. WEBER Photobleaching [ 1, 21 of
organic dyes limit the life- time of waveguides im Page 1 Volume 8. number 4 OPTICS
COMMUNICATIONS August 1973 WAVEGUIDE DYE LASERS PREPARED BY DIFFUSION J …
- 238000009792 diffusion process 0 title abstract description 16
Classifications
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01S—DEVICES USING STIMULATED EMISSION
- H01S3/00—Lasers, i.e. devices for generation, amplification, modulation, demodulation, or frequency-changing, using stimulated emission, of infra-red, visible, or ultra-violet waves
- H01S3/09—Processes or apparatus for excitation, e.g. pumping
- H01S3/091—Processes or apparatus for excitation, e.g. pumping using optical pumping
- H01S3/094—Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light
- H01S3/0941—Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light of a laser diode
- H01S3/09415—Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light of a laser diode the pumping beam being parallel to the lasing mode of the pumped medium, e.g. end-pumping
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01S—DEVICES USING STIMULATED EMISSION
- H01S3/00—Lasers, i.e. devices for generation, amplification, modulation, demodulation, or frequency-changing, using stimulated emission, of infra-red, visible, or ultra-violet waves
- H01S3/05—Construction or shape of optical resonators; Accomodation of active medium therein; Shape of active medium
- H01S3/06—Construction or shape of active medium
- H01S3/063—Waveguide lasers, i.e. whereby the dimensions of the waveguide are of the order of the light wavelength
- H01S3/067—Fibre lasers
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01S—DEVICES USING STIMULATED EMISSION
- H01S3/00—Lasers, i.e. devices for generation, amplification, modulation, demodulation, or frequency-changing, using stimulated emission, of infra-red, visible, or ultra-violet waves
- H01S3/05—Construction or shape of optical resonators; Accomodation of active medium therein; Shape of active medium
- H01S3/08—Construction or shape of optical resonators or components thereof
- H01S3/081—Construction or shape of optical resonators or components thereof comprising more than two reflectors
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01S—DEVICES USING STIMULATED EMISSION
- H01S3/00—Lasers, i.e. devices for generation, amplification, modulation, demodulation, or frequency-changing, using stimulated emission, of infra-red, visible, or ultra-violet waves
- H01S3/05—Construction or shape of optical resonators; Accomodation of active medium therein; Shape of active medium
- H01S3/06—Construction or shape of active medium
- H01S3/07—Construction or shape of active medium consisting of a plurality of parts, e.g. segments
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01S—DEVICES USING STIMULATED EMISSION
- H01S3/00—Lasers, i.e. devices for generation, amplification, modulation, demodulation, or frequency-changing, using stimulated emission, of infra-red, visible, or ultra-violet waves
- H01S3/10—Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
- H01S3/106—Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating by controlling a device placed within the cavity
- H01S3/1063—Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating by controlling a device placed within the cavity using a solid state device provided with at least one potential jump barrier
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01S—DEVICES USING STIMULATED EMISSION
- H01S3/00—Lasers, i.e. devices for generation, amplification, modulation, demodulation, or frequency-changing, using stimulated emission, of infra-red, visible, or ultra-violet waves
- H01S3/14—Lasers, i.e. devices for generation, amplification, modulation, demodulation, or frequency-changing, using stimulated emission, of infra-red, visible, or ultra-violet waves characterised by the material used as the active medium
- H01S3/16—Solid materials
- H01S3/1601—Solid materials characterised by an active (lasing) ion
- H01S3/1603—Solid materials characterised by an active (lasing) ion rare earth
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01S—DEVICES USING STIMULATED EMISSION
- H01S3/00—Lasers, i.e. devices for generation, amplification, modulation, demodulation, or frequency-changing, using stimulated emission, of infra-red, visible, or ultra-violet waves
- H01S3/10—Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
- H01S3/106—Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating by controlling a device placed within the cavity
- H01S3/108—Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating by controlling a device placed within the cavity using a non-linear optical device, e.g. exhibiting Brillouin- or Raman-scattering
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01S—DEVICES USING STIMULATED EMISSION
- H01S3/00—Lasers, i.e. devices for generation, amplification, modulation, demodulation, or frequency-changing, using stimulated emission, of infra-red, visible, or ultra-violet waves
- H01S3/10—Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
- H01S3/11—Pulse generation, e.g. Q-switching, mode locking
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01S—DEVICES USING STIMULATED EMISSION
- H01S3/00—Lasers, i.e. devices for generation, amplification, modulation, demodulation, or frequency-changing, using stimulated emission, of infra-red, visible, or ultra-violet waves
- H01S3/02—Constructional details
- H01S3/022—Constructional details of liquid lasers
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01S—DEVICES USING STIMULATED EMISSION
- H01S3/00—Lasers, i.e. devices for generation, amplification, modulation, demodulation, or frequency-changing, using stimulated emission, of infra-red, visible, or ultra-violet waves
- H01S3/14—Lasers, i.e. devices for generation, amplification, modulation, demodulation, or frequency-changing, using stimulated emission, of infra-red, visible, or ultra-violet waves characterised by the material used as the active medium
- H01S3/20—Liquids
- H01S3/213—Liquids including an organic dye
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3725809A (en) | Dielectric ring lasers using waveguiding | |
Tuccio et al. | CW laser emission from coumarin dyes in the blue and green | |
Harris et al. | Pulse generation in a cw dye laser by mode− locked synchronous pumping | |
Weber | Generation and measurement of ultrashort light pulses | |
Kranitzky et al. | A new infrared laser dye of superior photostability tunable to 1.24 μm with picosecond excitation | |
Alfano et al. | Effect of soap on the fluorescent lifetime and quantum yield of rhodamine 6G in water | |
Johnston et al. | Design and performance of a broad-band optical diode to enforce one-direction traveling-wave operation of a ring laser | |
Runge | A continuous mode-locked dye laser pumped in the red | |
Chen | Passive Q-switching of an intracavity frequency doubled diode-pumped Nd: YVO/sub 4//KTP green laser with Cr/sup 4+: YAG | |
Hansch et al. | Laser action of dyes in gelatin | |
Weber | Waveguide dye lasers prepared by diffusion | |
Decker | Excited state absorption and laser emission from infrared laser dyes optically pumped at 532 nm | |
He et al. | Intracavity upconversion lasing within a Q-switched Nd: YAG laser | |
Leduc et al. | Cw dye laser emission beyond 1000 nm | |
Zeidler | Pump-power-dependent efficiency in a YAG: Nd 3+ laser | |
Fukuda et al. | Laser oscillation of energy transfer solid-state dye laser with a thin-film ring resonator | |
US4295104A (en) | Laser having simultaneous ultraviolet and visible wavelengths | |
US4517675A (en) | Dye laser medium for subpicosecond laser pulse generation | |
Christov et al. | Shortening of excimer laser pulses with saturable absorbers | |
Chicklis et al. | Deep red laser emission in Ho: YLF | |
CN213212651U (en) | 8-shaped main and auxiliary cavity structure laser capable of improving femtosecond pulse repetition rate | |
US3493885A (en) | Photobleachable q-spoiler dye for laser operation | |
Von Gutfeld | Picosecond dye laser pulses using nitrogen laser pumping | |
Mourou et al. | Kinetics of bleaching in polymethine cyanine dyes | |
Runge | Mode-locking of He-Ne lasers with saturable organic dyes |