[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

Salimath et al., 2017 - Google Patents

A high-speed level shifting technique and its application in high-voltage, synchronous DC-DC converters with quasi-ZVS

Salimath et al., 2017

Document ID
8771550254990889091
Author
Salimath A
Gonano G
Bonizzoni E
Brambilla D
Botti E
Maloberti F
Publication year
Publication venue
2017 IEEE International Symposium on Circuits and Systems (ISCAS)

External Links

Snippet

This paper presents a level-shifting technique for high-voltage power converter applications. The proposed circuit effectively combines capacitive and active coupling of the input low (high) side signal to the output high (low) side to reduce the propagation delay of the level …
Continue reading at ieeexplore.ieee.org (other versions)

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • HELECTRICITY
    • H03BASIC ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making or -braking
    • H03K17/51Electronic switching or gating, i.e. not by contact-making or -braking characterised by the components used
    • H03K17/56Electronic switching or gating, i.e. not by contact-making or -braking characterised by the components used using semiconductor devices
    • H03K17/687Electronic switching or gating, i.e. not by contact-making or -braking characterised by the components used using semiconductor devices using field-effect transistors
    • H03K17/693Switching arrangements with several input- or output-terminals
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/06Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using resistors or capacitors, e.g. potential divider
    • H02M3/07Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using resistors or capacitors, e.g. potential divider using capacitors charged and discharged alternately by semiconductor devices with control electrode, e.g. charge pumps
    • HELECTRICITY
    • H03BASIC ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K3/00Circuits for generating electric pulses; Monostable, bistable or multistable circuits
    • H03K3/02Generators characterised by the type of circuit or by the means used for producing pulses
    • HELECTRICITY
    • H03BASIC ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making or -braking
    • H03K17/16Modifications for eliminating interference voltages or currents
    • H03K17/161Modifications for eliminating interference voltages or currents in field-effect transistor switches
    • HELECTRICITY
    • H03BASIC ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K19/00Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits
    • H03K19/0008Arrangements for reducing power consumption
    • HELECTRICITY
    • H03BASIC ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making or -braking
    • H03K17/06Modifications for ensuring a fully conducting state
    • H03K17/063Modifications for ensuring a fully conducting state in field-effect transistor switches
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BINDEXING SCHEME RELATING TO CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. INCLUDING HOUSING AND APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion
    • Y02B70/14Reduction of losses in power supplies
    • Y02B70/1458Synchronous rectification
    • HELECTRICITY
    • H03BASIC ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K19/00Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits
    • H03K19/0175Coupling arrangements; Interface arrangements
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/08Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters
    • HELECTRICITY
    • H03BASIC ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K2217/00Indexing scheme related to electronic switching or gating, i.e. not by contact-making or -breaking covered by H03K17/00

Similar Documents

Publication Publication Date Title
Liu et al. Design of on-chip gate drivers with power-efficient high-speed level shifting and dynamic timing control for high-voltage synchronous switching power converters
US10468965B2 (en) Multi-stage multilevel DC-DC step-down converter
CN103152017B (en) Delay circuit, circuit system with delay circuit and method thereof
Liu et al. A 100V gate driver with sub-nanosecond-delay capacitive-coupled level shifting and dynamic timing control for ZVS-based synchronous power converters
JP5169170B2 (en) Step-down switching regulator
CN108155903B (en) High-speed high-voltage level conversion circuit applied to GaN grid drive
Ke et al. A 3-to-40V V IN 10-to-50MHz 12W isolated GaN driver with self-excited t dead minimizer achieving 0.2 ns/0.3 ns t dead, 7.9% minimum duty ratio and 50V/ns CMTI
CN103516206A (en) Switched mode power supply and method of operating thereof
Xue et al. 12.5 A 2MHz 12-to-100V 90%-efficiency self-balancing ZVS three-level DC-DC regulator with constant-frequency AOT V2 control and 5ns ZVS turn-on delay
US10447161B2 (en) Inverting buck-boost power converter
US6819088B2 (en) DC-DC converter with resonant gate drive
Xue et al. A 99%-efficiency 1-MHz 1.6-kW zero-voltage-switching boost converter using normally-off GaN power transistors and adaptive dead-time controlled gate drivers
Wang et al. Integrated circuit implementation for a GaN HFET driver circuit
CN101855817A (en) Switcing power supply, control circuit controlling switching power supply and control method of switching power supply
Nan et al. A 1 MHz eGaN FET based 4-switch buck-boost converter for automotive applications
Cong et al. A 100V reconfigurable synchronous gate driver with comparator-based dynamic dead-time control for high-voltage high-frequency DC-DC converters
Liu et al. Building blocks for future dual-channel GaN gate drivers: Arbitrary waveform driver, bootstrap voltage supply, and level shifter
Salimath et al. A high-speed level shifting technique and its application in high-voltage, synchronous DC-DC converters with quasi-ZVS
US20240305200A1 (en) Switching Power Supply Circuit and Electronic Device
Chen et al. A 2-MHz 9–45-V input high-efficiency three-switch ZVS step-up/-down hybrid converter
CN112448579A (en) Multiphase switching capacitor type power converter and control method thereof
Xue et al. 100-V 2-MHz isolated QSW-ZVS three-level DC-DC converter with on-chip dynamic dead-time controlled synchronous gate driver for eGaN power FETs
Liu et al. A new circuit topology for floating high voltage level shifters
CN105917564A (en) Circuits and methods for operating switching regulators
Zhang et al. A 600V Half-Bridge Power Stage Fully Integrated with 25V Gate-Drivers in SiC CMOS Technology