Rousseeuw et al., 2006 - Google Patents
Robustness and outlier detection in chemometricsRousseeuw et al., 2006
View PDF- Document ID
- 8588775705664496823
- Author
- Rousseeuw P
- Debruyne M
- Engelen S
- Hubert M
- Publication year
- Publication venue
- Critical reviews in analytical chemistry
External Links
Snippet
In analytical chemistry, experimental data often contain outliers of one type or another. The most often used chemometrical/statistical techniques are sensitive to such outliers, and the results may be adversely affected by them. This paper presents an overview of robust …
- 238000005313 chemometric 0 title description 37
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06K—RECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
- G06K9/00—Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
- G06K9/62—Methods or arrangements for recognition using electronic means
- G06K9/6217—Design or setup of recognition systems and techniques; Extraction of features in feature space; Clustering techniques; Blind source separation
- G06K9/6232—Extracting features by transforming the feature space, e.g. multidimensional scaling; Mappings, e.g. subspace methods
- G06K9/6247—Extracting features by transforming the feature space, e.g. multidimensional scaling; Mappings, e.g. subspace methods based on an approximation criterion, e.g. principal component analysis
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06K—RECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
- G06K9/00—Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
- G06K9/62—Methods or arrangements for recognition using electronic means
- G06K9/6217—Design or setup of recognition systems and techniques; Extraction of features in feature space; Clustering techniques; Blind source separation
- G06K9/6261—Design or setup of recognition systems and techniques; Extraction of features in feature space; Clustering techniques; Blind source separation partitioning the feature space
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F19/00—Digital computing or data processing equipment or methods, specially adapted for specific applications
- G06F19/10—Bioinformatics, i.e. methods or systems for genetic or protein-related data processing in computational molecular biology
- G06F19/24—Bioinformatics, i.e. methods or systems for genetic or protein-related data processing in computational molecular biology for machine learning, data mining or biostatistics, e.g. pattern finding, knowledge discovery, rule extraction, correlation, clustering or classification
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06K—RECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
- G06K9/00—Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
- G06K9/62—Methods or arrangements for recognition using electronic means
- G06K9/6267—Classification techniques
- G06K9/6268—Classification techniques relating to the classification paradigm, e.g. parametric or non-parametric approaches
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F17/00—Digital computing or data processing equipment or methods, specially adapted for specific functions
- G06F17/10—Complex mathematical operations
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06K—RECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
- G06K9/00—Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
- G06K9/62—Methods or arrangements for recognition using electronic means
- G06K9/6267—Classification techniques
- G06K9/6279—Classification techniques relating to the number of classes
- G06K9/6284—Single class perspective, e.g. one-against-all classification; Novelty detection; Outlier detection
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F19/00—Digital computing or data processing equipment or methods, specially adapted for specific applications
- G06F19/70—Chemoinformatics, i.e. data processing methods or systems for the retrieval, analysis, visualisation, or storage of physicochemical or structural data of chemical compounds
- G06F19/708—Chemoinformatics, i.e. data processing methods or systems for the retrieval, analysis, visualisation, or storage of physicochemical or structural data of chemical compounds for data visualisation, e.g. molecular structure representations, graphics generation, display of maps or networks or other visual representations
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F17/00—Digital computing or data processing equipment or methods, specially adapted for specific functions
- G06F17/30—Information retrieval; Database structures therefor; File system structures therefor
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06N—COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N99/00—Subject matter not provided for in other groups of this subclass
- G06N99/005—Learning machines, i.e. computer in which a programme is changed according to experience gained by the machine itself during a complete run
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F21/00—Security arrangements for protecting computers, components thereof, programs or data against unauthorised activity
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T11/00—2D [Two Dimensional] image generation
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06Q—DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTING PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTING PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q40/00—Finance; Insurance; Tax strategies; Processing of corporate or income taxes
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06Q—DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTING PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTING PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q10/00—Administration; Management
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Rousseeuw et al. | Robustness and outlier detection in chemometrics | |
Rousseeuw et al. | Anomaly detection by robust statistics | |
Hubert et al. | High-breakdown robust multivariate methods | |
Hubert et al. | A deterministic algorithm for robust location and scatter | |
Hubert et al. | Minimum covariance determinant and extensions | |
Fu et al. | Estimating the number of clusters using cross-validation | |
Daszykowski et al. | Robust statistics in data analysis—A review: Basic concepts | |
Hibbert | Vocabulary of concepts and terms in chemometrics (IUPAC Recommendations 2016) | |
Hubert et al. | MacroPCA: An all-in-one PCA method allowing for missing values as well as cellwise and rowwise outliers | |
Hubert et al. | Sparse PCA for high-dimensional data with outliers | |
Liang et al. | Support vector machines and their application in chemistry and biotechnology | |
Filzmoser et al. | Robust tools for the imperfect world | |
Filzmoser et al. | Outlier identification in high dimensions | |
Luts et al. | A tutorial on support vector machine-based methods for classification problems in chemometrics | |
Consonni et al. | A MATLAB toolbox for multivariate regression coupled with variable selection | |
Sampson et al. | A comparison of methods for classifying clinical samples based on proteomics data: a case study for statistical and machine learning approaches | |
Cocchi | Introduction: Ways and means to deal with data from multiple sources | |
Islam | Chemometrics in nondestructive quality evaluation | |
Daszykowski et al. | Robust SIMCA-bounding influence of outliers | |
Lin et al. | Ordered homogeneity pursuit lasso for group variable selection with applications to spectroscopic data | |
Imbiriba et al. | Band selection for nonlinear unmixing of hyperspectral images as a maximal clique problem | |
Gutmann et al. | Spatio-chromatic adaptation via higher-order canonical correlation analysis of natural images | |
Hubert et al. | Multivariate outlier detection and robustness | |
Di Palma et al. | A robust Parafac model for compositional data | |
Karabatsos | Marginal maximum likelihood estimation methods for the tuning parameters of ridge, power ridge, and generalized ridge regression |