[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

Peng et al., 2018 - Google Patents

Self-paced joint sparse representation for the classification of hyperspectral images

Peng et al., 2018

Document ID
8560468334654647971
Author
Peng J
Sun W
Du Q
Publication year
Publication venue
IEEE Transactions on Geoscience and Remote Sensing

External Links

Snippet

In this paper, a self-paced joint sparse representation (SPJSR) model is proposed for the classification of hyperspectral images (HSIs). It replaces the least-squares (LS) loss in the standard joint sparse representation (JSR) model with a weighted LS loss and adopts a self …
Continue reading at ieeexplore.ieee.org (other versions)

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06KRECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K9/00Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
    • G06K9/62Methods or arrangements for recognition using electronic means
    • G06K9/6267Classification techniques
    • G06K9/6268Classification techniques relating to the classification paradigm, e.g. parametric or non-parametric approaches
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06KRECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K9/00Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
    • G06K9/36Image preprocessing, i.e. processing the image information without deciding about the identity of the image
    • G06K9/46Extraction of features or characteristics of the image
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06KRECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K9/00Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
    • G06K9/62Methods or arrangements for recognition using electronic means
    • G06K9/6201Matching; Proximity measures
    • G06K9/6202Comparing pixel values or logical combinations thereof, or feature values having positional relevance, e.g. template matching
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06KRECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K9/00Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
    • G06K9/62Methods or arrangements for recognition using electronic means
    • G06K9/6217Design or setup of recognition systems and techniques; Extraction of features in feature space; Clustering techniques; Blind source separation
    • G06K9/6256Obtaining sets of training patterns; Bootstrap methods, e.g. bagging, boosting
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06KRECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K9/00Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
    • G06K9/62Methods or arrangements for recognition using electronic means
    • G06K9/6217Design or setup of recognition systems and techniques; Extraction of features in feature space; Clustering techniques; Blind source separation
    • G06K9/6228Selecting the most significant subset of features
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06KRECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K9/00Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
    • G06K9/62Methods or arrangements for recognition using electronic means
    • G06K9/6217Design or setup of recognition systems and techniques; Extraction of features in feature space; Clustering techniques; Blind source separation
    • G06K9/6261Design or setup of recognition systems and techniques; Extraction of features in feature space; Clustering techniques; Blind source separation partitioning the feature space
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06KRECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K9/00Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
    • G06K9/62Methods or arrangements for recognition using electronic means
    • G06K9/68Methods or arrangements for recognition using electronic means using sequential comparisons of the image signals with a plurality of references in which the sequence of the image signals or the references is relevant, e.g. addressable memory
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/30Information retrieval; Database structures therefor; File system structures therefor
    • G06F17/30244Information retrieval; Database structures therefor; File system structures therefor in image databases
    • G06F17/30247Information retrieval; Database structures therefor; File system structures therefor in image databases based on features automatically derived from the image data
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06KRECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K9/00Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
    • G06K9/00221Acquiring or recognising human faces, facial parts, facial sketches, facial expressions
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06NCOMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N99/00Subject matter not provided for in other groups of this subclass
    • G06N99/005Learning machines, i.e. computer in which a programme is changed according to experience gained by the machine itself during a complete run
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10024Color image
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis

Similar Documents

Publication Publication Date Title
Peng et al. Self-paced joint sparse representation for the classification of hyperspectral images
Jiang et al. Multilayer spectral–spatial graphs for label noisy robust hyperspectral image classification
Peng et al. Maximum likelihood estimation-based joint sparse representation for the classification of hyperspectral remote sensing images
Nandhini Abirami et al. Deep CNN and deep GAN in computational visual perception‐driven image analysis
Lu et al. From subpixel to superpixel: A novel fusion framework for hyperspectral image classification
Song et al. Hyperspectral image classification with deep feature fusion network
Memon et al. Generalised fuzzy c‐means clustering algorithm with local information
Sameen et al. Classification of very high resolution aerial photos using spectral‐spatial convolutional neural networks
Liu et al. Probabilistic-kernel collaborative representation for spatial–spectral hyperspectral image classification
Li et al. Nearest regularized subspace for hyperspectral classification
Zhuang et al. Visual tracking via discriminative sparse similarity map
Jiao et al. Local stereo matching with improved matching cost and disparity refinement
Zhang et al. Adaptive Markov random field approach for classification of hyperspectral imagery
Zhang et al. A nonlocal weighted joint sparse representation classification method for hyperspectral imagery
Endres et al. Category-independent object proposals with diverse ranking
Chen et al. Nearest regularized joint sparse representation for hyperspectral image classification
CN106557782B (en) Hyperspectral image classification method and device based on class dictionary
WO2019205729A1 (en) Method used for identifying object, device and computer readable storage medium
Li et al. Adaptive kernel sparse representation based on multiple feature learning for hyperspectral image classification
Geng et al. Band selection for target detection in hyperspectral imagery using sparse CEM
Čadík et al. Learning to predict localized distortions in rendered images
Hao et al. An Object‐Based Change Detection Approach Using Uncertainty Analysis for VHR Images
Liu et al. Hyperspectral image classification using kernel sparse representation and semilocal spatial graph regularization
Yang et al. Log-euclidean kernel-based joint sparse representation for hyperspectral image classification
Sellami et al. SHCNet: A semi-supervised hypergraph convolutional networks based on relevant feature selection for hyperspectral image classification