[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

Kletsov et al., 2023 - Google Patents

A General Simulation Framework for Radiative Wireless Power Transfer Systems Based On Phased-Array Transmitters

Kletsov et al., 2023

View PDF
Document ID
8554747173590008018
Author
Kletsov A
Vilenskiy A
Chernokalov A
Lee C
Yeo S
Publication year
Publication venue
2023 IEEE 97th Vehicular Technology Conference (VTC2023-Spring)

External Links

Snippet

Radiative wireless power transfer (WPT) is an emerging technology for charging moving objects (eg, vehicles) or static user terminals (eg, mobile handsets). The most popular radiative WPT techniques employ transmitter (TX) and receiver (RX) phased arrays with …
Continue reading at www.researchgate.net (PDF) (other versions)

Classifications

    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01QAERIALS
    • H01Q21/00Aerial arrays or systems
    • H01Q21/06Arrays of individually energised active aerial units similarly polarised and spaced apart
    • H01Q21/061Two dimensional planar arrays
    • H01Q21/065Patch antenna array
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01QAERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an aerial or aerial system
    • H01Q3/26Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an aerial or aerial system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture
    • H01Q3/2605Array of radiating elements provided with a feedback control over the element weights, e.g. adaptive arrays
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01QAERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an aerial or aerial system
    • H01Q3/26Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an aerial or aerial system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture
    • H01Q3/30Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an aerial or aerial system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array
    • H01Q3/34Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an aerial or aerial system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array by electrical means
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01QAERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an aerial or aerial system
    • H01Q3/26Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an aerial or aerial system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture
    • H01Q3/267Phased-array testing or checking devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S3/00Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received
    • G01S3/02Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received using radio waves
    • G01S3/14Systems for determining direction or deviation from predetermined direction
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S3/00Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received
    • G01S3/02Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received using radio waves
    • G01S3/74Multi-channel systems specially adapted for direction-finding, i.e. having a single aerial system capable of giving simultaneous indications of the directions of different signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna systems, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna systems, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna systems, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna systems, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01QAERIALS
    • H01Q25/00Aerials or aerial systems providing at least two radiating patterns
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/02Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01QAERIALS
    • H01Q21/00Aerial arrays or systems
    • H01Q21/24Combinations of aerial elements or aerial units polarised in different directions for transmitting or receiving circularly and elliptically polarised waves or waves linearly polarised in any direction
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01QAERIALS
    • H01Q1/00Details of, or arrangements associated with, aerials
    • H01Q1/52Means for reducing coupling between aerials; Means for reducing coupling between an aerial and another structure
    • H01Q1/521Means for reducing coupling between aerials; Means for reducing coupling between an aerial and another structure reducing the coupling between adjacent antennas
    • H01Q1/523Means for reducing coupling between aerials; Means for reducing coupling between an aerial and another structure reducing the coupling between adjacent antennas between antennas of an array
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R29/00Arrangements for measuring or indicating electric quantities not covered by groups G01R19/00 - G01R27/00
    • G01R29/08Measuring electromagnetic field characteristics
    • G01R29/10Radiation diagrams of aerials; Antenna testing in general

Similar Documents

Publication Publication Date Title
US10663563B2 (en) On-site calibration of array antenna systems
He et al. Mixed near-field and far-field localization and array calibration with partly calibrated arrays
CN108445303B (en) Near-field electromagnetic scattering characteristic simulation method
Park et al. Analysis and experiment on multi-antenna-to-multi-antenna RF wireless power transfer
Wang et al. Enabling super-resolution parameter estimation for mm-wave channel sounding
Zhao et al. Robust fixed frequency invariant beamformer design subject to norm-bounded errors
Luo et al. An automatically paired two-dimensional direction-of-arrival estimation method for two parallel uniform linear arrays
Chen et al. Comparisons of different methods to determine correlation applied to multi-port UWB eleven antenna
Grundmann et al. Investigation of direction of arrival estimation using characteristic modes
Castellanos et al. Electromagnetic manifold characterization of antenna arrays
Nikolic et al. Estimation of direction of arrival using multipath on array platforms
Kletsov et al. A General Simulation Framework for Radiative Wireless Power Transfer Systems Based On Phased-Array Transmitters
Stankovic et al. Efficient DOA estimation of impinging stochastic EM signal using neural networks
Qin et al. DOA estimation and mutual coupling calibration algorithm for array in plasma environment
Chou Near-field orthogonal beam scan by phased arrays of antennas with active analog beamformer for maximum NF-RCS in target detection
Pfeiffer et al. Virtual impedance method for mutual coupling compensation
Stankovic et al. Localization of mobile users of stochastic radiation nature by using Neural Networks
Nouri et al. DOA estimation based on gridless fuzzy active learning under unknown mutual coupling and nonuniform noise: Experimental verification
Peng et al. Design of an array-based plane wave generator for compact field antenna testing
Stankovic et al. Neural networks-based DOA estimation of multiple stochastic narrow-band EM sources
Stanković et al. Neural network approach for efficient DOA determination of multiple stochastic EM sources in far-field
Raniszewski et al. The investigation of mutual coupling effects on a large array antenna radiation pattern
Stankovic et al. 2D Localization of source of stochastic EM radiation by using neural networks
Castellanos et al. Electromagnetic-based signal processing for arbitrary arrays
Corbin High frequency direction finding using structurally integrated antennas on a large airborne platform