Petre et al., 2007 - Google Patents
Passively Q-switched diode pumped CW Nd: GdVO 4-Cr 4+: YAG and Nd: YAG-CR 4+: YAG laserPetre et al., 2007
- Document ID
- 8505567442842922286
- Author
- Petre C
- Dascalu T
- Publication year
- Publication venue
- Advanced Laser Technologies 2006
External Links
Snippet
High peak power and high energy laser pulse from 2 at% Nd: YAG and 1 at.% Nd: GdVO 4 diode pumped at 808nm laser and passively Q-switched by Cr 4+: YAG is reported. Pulse energy as large as 45μJ, 10kHz repetition rate and 1.7 MW peak power has been …
- 238000005086 pumping 0 description 5
Classifications
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01S—DEVICES USING STIMULATED EMISSION
- H01S3/00—Lasers, i.e. devices for generation, amplification, modulation, demodulation, or frequency-changing, using stimulated emission, of infra-red, visible, or ultra-violet waves
- H01S3/09—Processes or apparatus for excitation, e.g. pumping
- H01S3/091—Processes or apparatus for excitation, e.g. pumping using optical pumping
- H01S3/094—Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light
- H01S3/0941—Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light of a laser diode
- H01S3/09415—Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light of a laser diode the pumping beam being parallel to the lasing mode of the pumped medium, e.g. end-pumping
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01S—DEVICES USING STIMULATED EMISSION
- H01S3/00—Lasers, i.e. devices for generation, amplification, modulation, demodulation, or frequency-changing, using stimulated emission, of infra-red, visible, or ultra-violet waves
- H01S3/14—Lasers, i.e. devices for generation, amplification, modulation, demodulation, or frequency-changing, using stimulated emission, of infra-red, visible, or ultra-violet waves characterised by the material used as the active medium
- H01S3/16—Solid materials
- H01S3/1601—Solid materials characterised by an active (lasing) ion
- H01S3/1603—Solid materials characterised by an active (lasing) ion rare earth
- H01S3/1618—Solid materials characterised by an active (lasing) ion rare earth ytterbium
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01S—DEVICES USING STIMULATED EMISSION
- H01S3/00—Lasers, i.e. devices for generation, amplification, modulation, demodulation, or frequency-changing, using stimulated emission, of infra-red, visible, or ultra-violet waves
- H01S3/05—Construction or shape of optical resonators; Accomodation of active medium therein; Shape of active medium
- H01S3/06—Construction or shape of active medium
- H01S3/0619—Coatings, e.g. AR, HR, passivation layer
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01S—DEVICES USING STIMULATED EMISSION
- H01S3/00—Lasers, i.e. devices for generation, amplification, modulation, demodulation, or frequency-changing, using stimulated emission, of infra-red, visible, or ultra-violet waves
- H01S3/05—Construction or shape of optical resonators; Accomodation of active medium therein; Shape of active medium
- H01S3/06—Construction or shape of active medium
- H01S3/0602—Crystal lasers or glass lasers
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01S—DEVICES USING STIMULATED EMISSION
- H01S3/00—Lasers, i.e. devices for generation, amplification, modulation, demodulation, or frequency-changing, using stimulated emission, of infra-red, visible, or ultra-violet waves
- H01S3/10—Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
- H01S3/106—Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating by controlling a device placed within the cavity
- H01S3/108—Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating by controlling a device placed within the cavity using a non-linear optical device, e.g. exhibiting Brillouin- or Raman-scattering
- H01S3/109—Frequency multiplying, e.g. harmonic generation
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01S—DEVICES USING STIMULATED EMISSION
- H01S3/00—Lasers, i.e. devices for generation, amplification, modulation, demodulation, or frequency-changing, using stimulated emission, of infra-red, visible, or ultra-violet waves
- H01S3/10—Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
- H01S3/11—Pulse generation, e.g. Q-switching, mode locking
- H01S3/117—Q-switching using acousto-optical devices
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01S—DEVICES USING STIMULATED EMISSION
- H01S3/00—Lasers, i.e. devices for generation, amplification, modulation, demodulation, or frequency-changing, using stimulated emission, of infra-red, visible, or ultra-violet waves
- H01S3/10—Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
- H01S3/106—Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating by controlling a device placed within the cavity
- H01S3/1063—Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating by controlling a device placed within the cavity using a solid state device provided with at least one potential jump barrier
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01S—DEVICES USING STIMULATED EMISSION
- H01S3/00—Lasers, i.e. devices for generation, amplification, modulation, demodulation, or frequency-changing, using stimulated emission, of infra-red, visible, or ultra-violet waves
- H01S3/05—Construction or shape of optical resonators; Accomodation of active medium therein; Shape of active medium
- H01S3/06—Construction or shape of active medium
- H01S3/07—Construction or shape of active medium consisting of a plurality of parts, e.g. segments
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01S—DEVICES USING STIMULATED EMISSION
- H01S3/00—Lasers, i.e. devices for generation, amplification, modulation, demodulation, or frequency-changing, using stimulated emission, of infra-red, visible, or ultra-violet waves
- H01S3/05—Construction or shape of optical resonators; Accomodation of active medium therein; Shape of active medium
- H01S3/06—Construction or shape of active medium
- H01S3/063—Waveguide lasers, i.e. whereby the dimensions of the waveguide are of the order of the light wavelength
- H01S3/067—Fibre lasers
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01S—DEVICES USING STIMULATED EMISSION
- H01S3/00—Lasers, i.e. devices for generation, amplification, modulation, demodulation, or frequency-changing, using stimulated emission, of infra-red, visible, or ultra-violet waves
- H01S3/14—Lasers, i.e. devices for generation, amplification, modulation, demodulation, or frequency-changing, using stimulated emission, of infra-red, visible, or ultra-violet waves characterised by the material used as the active medium
- H01S3/16—Solid materials
- H01S3/163—Solid materials characterised by a crystal matrix
- H01S3/164—Solid materials characterised by a crystal matrix garnet
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01S—DEVICES USING STIMULATED EMISSION
- H01S3/00—Lasers, i.e. devices for generation, amplification, modulation, demodulation, or frequency-changing, using stimulated emission, of infra-red, visible, or ultra-violet waves
- H01S3/02—Constructional details
- H01S3/04—Cooling arrangements
- H01S3/042—Cooling arrangements for solid state lasers
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01S—DEVICES USING STIMULATED EMISSION
- H01S3/00—Lasers, i.e. devices for generation, amplification, modulation, demodulation, or frequency-changing, using stimulated emission, of infra-red, visible, or ultra-violet waves
- H01S3/02—Constructional details
- H01S3/025—Constructional details of solid state lasers, e.g. housings or mountings
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01S—DEVICES USING STIMULATED EMISSION
- H01S3/00—Lasers, i.e. devices for generation, amplification, modulation, demodulation, or frequency-changing, using stimulated emission, of infra-red, visible, or ultra-violet waves
- H01S3/23—Arrangements of two or more lasers not provided for in groups H01S3/02 - H01S3/22, e.g. tandem arrangements of separate active media
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01S—DEVICES USING STIMULATED EMISSION
- H01S3/00—Lasers, i.e. devices for generation, amplification, modulation, demodulation, or frequency-changing, using stimulated emission, of infra-red, visible, or ultra-violet waves
- H01S3/005—Optical devices external to the laser cavity, specially adapted for lasers, e.g. for homogenisation of the beam or for manipulating laser pulses, e.g. pulse shaping
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Giesen et al. | Fifteen years of work on thin-disk lasers: results and scaling laws | |
Manjooran et al. | Generation of sub-50 fs pulses with> 1.5 MW of peak power from a diode-pumped Yb: CALGO laser oscillator | |
Shen et al. | Passively Q-switched Yb: YAG laser with a GaAs output coupler | |
Chen et al. | Efficient sub-nanosecond intracavity optical parametric oscillator pumped with a passively Q-switched Nd: GdVO 4 laser | |
Stolzenburg et al. | 700W intracavity-frequency doubled Yb: YAG thin-disk laser at 100 kHz repetition rate | |
Speiser | Thin disk lasers: history and prospects | |
Maleki et al. | 57ámJ with 10áns passively Q-switched diode pumped Nd: YAG laser using Cr 4+: YAG crystal | |
Apollonov | High power disk lasers: advantages and prospects | |
Petre et al. | Passively Q-switched diode pumped CW Nd: GdVO 4-Cr 4+: YAG and Nd: YAG-CR 4+: YAG laser | |
Ng et al. | Q-switched and continuous-wave mode-locking of a diode-pumped Nd: Gd 0.64 Y 0.36 VO 4− Cr 4+: YAG laser | |
Wang et al. | Efficient Ho: YAP laser dual-end-pumped by Tm fiber laser | |
Peng et al. | Passively Q-switched a-cut Nd: GdVO4 self-Raman laser with Cr: YAG | |
Du et al. | Continuous-wave and passively Q-switched Nd: GdVO4 lasers at 1.06 μm end-pumped by laser-diode-array | |
Nishio et al. | High efficiency laser-diode-pumped continuous-wave Yb: YAG laser at room temperature | |
Joly et al. | Novel method for pulse control in Nd: YVO4/Cr4+: YAG passively Q-switched microchip laser | |
Huang et al. | Comparative study between extracavity and intracavity frequency-doubled laser at 532 nm: application for the deep ultraviolet generation at 266 nm | |
Miao et al. | Highly stable and efficient KTP-based intracavity optical parametric oscillator with a diode-pumped passively Q-switched laser | |
Otsuka et al. | Lithium neodymium tetraphosphate laser | |
Jelínek et al. | Passively Q-switched quasi-continuously pumped 2.4% Nd: YAG laser in a bounce geometry | |
Aman | 1 mJ Passively Q-switched Nd: YAB laser using a V: YAG crystal | |
Kuper et al. | Green pumped alexandrite lasers | |
Zhang et al. | LD-pumped actively Q-switched Tm, Ho: YLF laser at room temperature | |
Yahia et al. | > 200 mJ High-Brightness Sub-ns Micro-Laser-Based Compact MOPA | |
Aman | Diode-end-pumped frequency-doubled Nd: YAP/Cr: YAG laser using a KTP crystal | |
Li et al. | Implementation of a diode-pumped Nd: YAG laser with quick-change output couplers for high-beam quality 1064 or 532 nm wavelength generation |