[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

Kumar et al., 2009 - Google Patents

Effect of melt temperature on the mechanical properties of bulk metallic glasses

Kumar et al., 2009

Document ID
8485517042097696279
Author
Kumar G
Ohkubo T
Hono K
Publication year
Publication venue
Journal of Materials Research

External Links

Snippet

The effect of melt temperature on the structure and mechanical properties of three Zr-based bulk metallic glasses (BMGs)—Zr62Cu17Ni13Al8, Zr55Cu20Ni10Al10Ti5, and Zr52. 5Cu17. 9Ni14. 6Al10Ti5 (Vit105)—has been studied. The results show that the BMGs cast from …
Continue reading at www.cambridge.org (other versions)

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C45/00Amorphous alloys
    • C22C45/02Amorphous alloys with Fe as the major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C45/00Amorphous alloys
    • C22C45/04Amorphous alloys with Ni or Co as the major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C45/00Amorphous alloys
    • C22C45/10Amorphous alloys with Mo, W, Nb, Ta, Ti or Zr or Hf as the major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making alloys
    • C22C1/002Making amorphous alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C16/00Alloys based on zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making alloys
    • C22C1/02Making alloys by melting
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making alloys
    • C22C1/04Making alloys by powder metallurgy
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • C22C19/05Alloys based on nickel or cobalt based on nickel with chromium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C14/00Alloys based on titanium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/07Alloys based on nickel or cobalt based on cobalt
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/10Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of nickel or cobalt or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/16Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of other metals or alloys based thereon
    • C22F1/18Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of other metals or alloys based thereon high-melting or refractory metals or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C23/00Alloys based on magnesium
    • C22C23/02Alloys based on magnesium with aluminium as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C29/00Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides
    • C22C29/005Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides comprising a particular metallic binder
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C29/00Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides
    • C22C29/02Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides

Similar Documents

Publication Publication Date Title
Ma et al. Mg-based bulk metallic glass composites with plasticity and high strength
Inoue et al. Thermal stability and mechanical strength of bulk glassy Ni-Nb-Ti-Zr alloys
Kumar et al. Effect of melt temperature on the mechanical properties of bulk metallic glasses
He et al. Effect of Ta on glass formation, thermal stability and mechanical properties of a Zr52. 25Cu28. 5Ni4. 75Al9. 5Ta5 bulk metallic glass
Louzguine et al. High-strength binary Ti–Fe bulk alloys with enhanced ductility
Inoue et al. Development and applications of highly functional Al-based materials by use of metastable phases
Jiang et al. The effect of primary crystallizing phases on mechanical properties of Cu46Zr47Al7 bulk metallic glass composites
Kim et al. Development of quaternary Fe–B–Y–Nb bulk glassy alloys with high glass-forming ability
Kim et al. Formation of ductile Cu-based bulk metallic glass matrix composite by Ta addition
Duan et al. Effect of Ta on the microstructure and mechanical properties of WTa alloys prepared by arc melting
Li et al. Effects of Cu, Fe and Co addition on the glass-forming ability and mechanical properties of Zr-Al-Ni bulk metallic glasses
Yazici et al. Effects of minor Cu and Si additions on glass forming ability and mechanical properties of Co-Fe-Ta-B Bulk metallic glass
Gong et al. Ti-Zr-Be-Fe quaternary bulk metallic glasses designed by Fe alloying
Louzguine et al. Bulk metallic glasses: Fabrication, structure, and structural changes under heating
Abbasi et al. Glass forming ability and mechanical properties of Nb-containing Cu–Zr–Al based bulk metallic glasses
Mondal et al. Glass forming ability and mechanical properties of quinary Zr-based bulk metallic glasses
LIU et al. Effect of minor Fe addition on glass forming ability and mechanical properties of Zr55Al10Ni5Cu30 bulk metallic glass
Li et al. Microstructure and mechanical properties of Zr–Co–Al alloys prepared by rapid solidification
HM et al. Compression behavior of Mg-Cu-Gd bulk metallic glasses with various specimen height to diameter ratios
Bian et al. In situ formed (Cu0. 6Zr0. 25Ti0. 15) 93Nb7 bulk metallic glass composites
Zhu et al. Influence of casting temperature on microstructures and mechanical properties of Cu50Zr45. 5Ti2. 5Y2 metallic glass prepared using copper mold casting
Zhang et al. Transition from plasticity to brittleness in Cu-Zr-based bulk metallic glasses
Zhang et al. Formation and mechanical properties of La–Al (–Ga)–C bulk metallic glasses with high content of carbon
Zhu et al. Effect of Zr addition on the glass-forming ability and mechanical properties of Ni–Nb alloy
JB et al. Formation and thermal stability of Ni-based bulk metallic glasses in Ni-Zr-Nb-Al system