Liu et al., 2019 - Google Patents
Combustion and emission characteristics of a spark-ignition aviation piston engine fueled with alcohol/kerosene blendsLiu et al., 2019
View PDF- Document ID
- 8323635518430800738
- Author
- Liu G
- Li Z
- Zhou Q
- Qian Y
- Lu X
- Publication year
- Publication venue
- International Conference on Applied Energy
External Links
Snippet
The fuel utilized in spark-ignition aviation piston engine is undergoing a transformation from gasoline to heavy fuels (kerosene and diesel) for security reasons. To overcome the problem that kerosene is difficult to be ignited by spark but easy to cause engine knocking …
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N ethanol   CCO 0 title abstract description 92
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/10—Internal combustion engine [ICE] based vehicles
- Y02T10/12—Technologies for the improvement of indicated efficiency of a conventional ICE
- Y02T10/125—Combustion chambers and charge mixing enhancing inside the combustion chamber
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/10—Internal combustion engine [ICE] based vehicles
- Y02T10/30—Use of alternative fuels
- Y02T10/36—Multiple fuels, e.g. multi fuel engines
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/10—Internal combustion engine [ICE] based vehicles
- Y02T10/12—Technologies for the improvement of indicated efficiency of a conventional ICE
- Y02T10/128—Methods of operating, e.g. homogeneous charge compression ignition [HCCI], premixed charge compression ignition [PCCI]
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/10—Internal combustion engine [ICE] based vehicles
- Y02T10/12—Technologies for the improvement of indicated efficiency of a conventional ICE
- Y02T10/126—Treating fuel, air or air/fuel mixture
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING ENGINES OR PUMPS
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/30—Controlling fuel injection
- F02D41/3011—Controlling fuel injection according to or using specific or several modes of combustion
- F02D41/3017—Controlling fuel injection according to or using specific or several modes of combustion characterised by the mode(s) being used
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING ENGINES OR PUMPS
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D19/00—Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
- F02D19/06—Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with pluralities of fuels, e.g. alternatively with light and heavy fuel oil, other than engines indifferent to the fuel consumed
- F02D19/08—Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with pluralities of fuels, e.g. alternatively with light and heavy fuel oil, other than engines indifferent to the fuel consumed simultaneously using pluralities of fuels
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10L—FUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
- C10L1/00—Liquid carbonaceous fuels
- C10L1/10—Liquid carbonaceous fuels containing additives
- C10L1/14—Organic compounds
- C10L1/18—Containing oxygen
- C10L1/182—Containing oxygen containing hydroxy groups; Salts thereof
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GASES [GHG] EMISSION, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E50/00—Technologies for the production of fuel of non-fossil origin
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10L—FUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
- C10L1/00—Liquid carbonaceous fuels
- C10L1/10—Liquid carbonaceous fuels containing additives
- C10L1/14—Organic compounds
- C10L1/18—Containing oxygen
- C10L1/185—Ethers; Acetals; Ketals; Aldehydes; Ketones
- C10L1/1857—Aldehydes; Ketones
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING ENGINES OR PUMPS
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02B—INTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
- F02B1/00—Engines characterised by fuel-air mixture compression
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING ENGINES OR PUMPS
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02B—INTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
- F02B19/00—Engines characterised by precombustion chambers
- F02B19/14—Engines characterised by precombustion chambers with compression ignition
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING ENGINES OR PUMPS
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02B—INTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
- F02B3/00—Engines characterised by air compression and subsequent fuel addition
- F02B3/06—Engines characterised by air compression and subsequent fuel addition with compression ignition
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Pachiannan et al. | A literature review of fuel effects on performance and emission characteristics of low-temperature combustion strategies | |
Atmanli et al. | A comparative analysis of n-butanol/diesel and 1-pentanol/diesel blends in a compression ignition engine | |
Dimitriou et al. | A review of hydrogen as a compression ignition engine fuel | |
Kumar et al. | An experimental comparison of methods to use methanol and Jatropha oil in a compression ignition engine | |
Liu et al. | Investigation of engine performance for alcohol/kerosene blends as in spark-ignition aviation piston engine | |
Chaichan | EGR effects on hydrogen engines performance and emissions | |
Yu et al. | Experimental study on the application of n-butanol and n-butanol/kerosene blends as fuel for spark ignition aviation piston engine | |
Shivaprasad et al. | Usage of hydrogen as a fuel in spark ignition engine | |
Gonca et al. | Simulation of performance and nitrogen oxide formation of a hydrogen-enriched diesel engine with the steam injection method | |
WO2002077126A1 (en) | Tuning fuel composition for driving cycle conditions in spark ignition engines | |
Sharudin et al. | Application of alcohol fuel properties in spark ignition engine: a review | |
Alahmer | Performance and emission assessments for different acetone gasoline blends powered spark ignition engine | |
Liu et al. | Combustion and emission characteristics of a spark-ignition aviation piston engine fueled with alcohol/kerosene blends | |
Kumar et al. | Effects of ethanol addition on performance, emission and combustion of DI diesel engine running at different injection pressures | |
Harari | Effect of injection timing on the performance and emissions of dual fuel engine operated with compressed biogas and calophyllum inophyllum methyl ester | |
Yadav et al. | Performance of diesel engine using blends of conventional diesel and jatropha bio-diesel as alternative fuel for clean environment | |
Karadia et al. | Effects of ethanol-gasoline blends on performance and emissions of gasoline engines | |
Gheorghe et al. | Hydrogen a new fuel for internal combustion engines | |
Adnan et al. | An experimental investigation of unmodified DI diesel engine with hydrogen addition | |
Gowtham et al. | An Experimental Investigation on Performance and Emission Characteristics of PCCI Engine Using BiodieselEthanol Blends in Dual Fuel Mode | |
Iliev | Investigation of the of gasoline direct injection engine performance and emissions working on Ethanol-Gasoline blends | |
Ziyaei et al. | A review of ultra-lean and stratified charged combustion in natural gas spark ignition engines | |
Mohsin et al. | Effects of Multi-Variant Biofuel on Engine Performance and Exhaust Emission of DDF Engine System | |
Rao et al. | Characterisation of diethyl ether blended waste plastic oil used as a fuel in variable compression ratio engine-an experimental study | |
Dond et al. | Effect of Injection System Parameters on Performance and Emission Characteristics of a Small Single Cylinder Diesel Engine |