Kobayashi et al., 2020 - Google Patents
The high inclination solar missionKobayashi et al., 2020
View PDF- Document ID
- 8310469081190506240
- Author
- Kobayashi K
- Johnson L
- Thomas H
- McIntosh S
- McKenzie D
- Newmark J
- Heaton A
- Carr J
- Baysinger M
- Bean Q
- Fabisinski L
- Capizzo P
- Clements K
- Sutherlin S
- Garcia J
- Medina K
- Turse D
- Publication year
- Publication venue
- arXiv preprint arXiv:2006.03111
External Links
Snippet
The High Inclination Solar Mission (HISM) is a concept for an out-of-the-ecliptic mission for observing the Sun and the heliosphere. The mission profile is largely based on the Solar Polar Imager concept: initially spiraling in to a 0.48 AU ecliptic orbit, then increasing the …
- 241001544487 Macromiidae 0 abstract description 18
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64G—COSMONAUTICS; VEHICLES OR EQUIPMENT THEREFOR
- B64G1/00—Cosmonautic vehicles
- B64G1/22—Parts of, or equipment specially adapted for fitting in or to, cosmonautic vehicles
- B64G1/24—Guiding or controlling apparatus, e.g. for attitude control
- B64G1/28—Guiding or controlling apparatus, e.g. for attitude control using inertia or gyro effect
- B64G1/281—Spin-stabilised spacecraft
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64G—COSMONAUTICS; VEHICLES OR EQUIPMENT THEREFOR
- B64G1/00—Cosmonautic vehicles
- B64G1/22—Parts of, or equipment specially adapted for fitting in or to, cosmonautic vehicles
- B64G1/42—Arrangements or adaptations of power supply systems
- B64G1/44—Arrangements or adaptations of power supply systems using radiation, e.g. deployable solar arrays
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64G—COSMONAUTICS; VEHICLES OR EQUIPMENT THEREFOR
- B64G1/00—Cosmonautic vehicles
- B64G1/22—Parts of, or equipment specially adapted for fitting in or to, cosmonautic vehicles
- B64G1/24—Guiding or controlling apparatus, e.g. for attitude control
- B64G1/28—Guiding or controlling apparatus, e.g. for attitude control using inertia or gyro effect
- B64G1/283—Guiding or controlling apparatus, e.g. for attitude control using inertia or gyro effect using reaction wheels
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64G—COSMONAUTICS; VEHICLES OR EQUIPMENT THEREFOR
- B64G1/00—Cosmonautic vehicles
- B64G1/22—Parts of, or equipment specially adapted for fitting in or to, cosmonautic vehicles
- B64G1/40—Arrangements or adaptations of propulsion systems
- B64G1/402—Propellant tanks; Feeding propellants
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64G—COSMONAUTICS; VEHICLES OR EQUIPMENT THEREFOR
- B64G1/00—Cosmonautic vehicles
- B64G1/22—Parts of, or equipment specially adapted for fitting in or to, cosmonautic vehicles
- B64G1/24—Guiding or controlling apparatus, e.g. for attitude control
- B64G1/36—Guiding or controlling apparatus, e.g. for attitude control using sensors, e.g. sun-sensors, horizon sensors
- B64G1/363—Guiding or controlling apparatus, e.g. for attitude control using sensors, e.g. sun-sensors, horizon sensors using sun sensors
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64G—COSMONAUTICS; VEHICLES OR EQUIPMENT THEREFOR
- B64G1/00—Cosmonautic vehicles
- B64G1/22—Parts of, or equipment specially adapted for fitting in or to, cosmonautic vehicles
- B64G1/24—Guiding or controlling apparatus, e.g. for attitude control
- B64G1/26—Guiding or controlling apparatus, e.g. for attitude control using jets
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64G—COSMONAUTICS; VEHICLES OR EQUIPMENT THEREFOR
- B64G1/00—Cosmonautic vehicles
- B64G1/22—Parts of, or equipment specially adapted for fitting in or to, cosmonautic vehicles
- B64G1/24—Guiding or controlling apparatus, e.g. for attitude control
- B64G1/32—Guiding or controlling apparatus, e.g. for attitude control using earth's magnetic field
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64G—COSMONAUTICS; VEHICLES OR EQUIPMENT THEREFOR
- B64G1/00—Cosmonautic vehicles
- B64G1/22—Parts of, or equipment specially adapted for fitting in or to, cosmonautic vehicles
- B64G1/52—Protection, safety or emergency devices; Survival aids
- B64G1/58—Thermal protection, e.g. heat shields
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64G—COSMONAUTICS; VEHICLES OR EQUIPMENT THEREFOR
- B64G1/00—Cosmonautic vehicles
- B64G1/22—Parts of, or equipment specially adapted for fitting in or to, cosmonautic vehicles
- B64G1/64—Systems for coupling or separating cosmonautic vehicles or parts thereof, e.g. docking arrangements
- B64G1/646—Docking or rendez-vous systems
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64G—COSMONAUTICS; VEHICLES OR EQUIPMENT THEREFOR
- B64G1/00—Cosmonautic vehicles
- B64G1/22—Parts of, or equipment specially adapted for fitting in or to, cosmonautic vehicles
- B64G1/46—Arrangements or adaptations of devices for control of environment or living conditions
- B64G1/50—Arrangements or adaptations of devices for control of environment or living conditions for temperature control
- B64G1/503—Radiator panels
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64G—COSMONAUTICS; VEHICLES OR EQUIPMENT THEREFOR
- B64G1/00—Cosmonautic vehicles
- B64G1/22—Parts of, or equipment specially adapted for fitting in or to, cosmonautic vehicles
- B64G1/24—Guiding or controlling apparatus, e.g. for attitude control
- B64G1/38—Guiding or controlling apparatus, e.g. for attitude control damping of oscillations, e.g. nutation dampers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64G—COSMONAUTICS; VEHICLES OR EQUIPMENT THEREFOR
- B64G1/00—Cosmonautic vehicles
- B64G1/22—Parts of, or equipment specially adapted for fitting in or to, cosmonautic vehicles
- B64G1/222—Appendage deployment mechanisms
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64G—COSMONAUTICS; VEHICLES OR EQUIPMENT THEREFOR
- B64G1/00—Cosmonautic vehicles
- B64G1/10—Artificial satellites; Systems of such satellites; Interplanetary vehicles
- B64G1/1014—Navigation satellites
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Macdonald et al. | Solar polar orbiter: a solar sail technology reference study | |
Kobayashi et al. | The high inclination solar mission | |
Funase et al. | IKAROS, a solar sail demonstrator and its application to Trojan asteroid exploration | |
Rayman et al. | Deep space one: NASA's first Deep-Space technology validation mission | |
Zhang et al. | Space advanced technology demonstration satellite | |
Goldstein et al. | Solar Polar Sail mission: report of a study to put a scientific spacecraft in a circular polar orbit about the sun | |
Hegde et al. | Design and development of RVSAT-1, a student nano-satellite with biological payload | |
Macdonald et al. | A near-term roadmap for solar sailing | |
Mukhayadi | Efficient and high precision momentum bias attitude control for small satellite | |
Johnson et al. | Solar sail propulsion for interplanetary CubeSats | |
Janson | I‐1: A Brief History of Nanosatellites | |
Brophy et al. | Dawn: An ion-propelled journey to the beginning of the solar system | |
Regeon et al. | CLEMENTINE:“The Deep Space Program Science Experiment” | |
Carroll et al. | Arc-minute nanosatellite attitude control: Enabling technology for the BRITE stellar photometry mission | |
Saito et al. | An overview and initial in-orbit status of “INDEX” satellite | |
Bondo et al. | Preliminary design of an advanced mission to pluto | |
Johnson et al. | A High Inclination Solar Mission Enabled by Near-Term Solar Sail Propulsion | |
Burton et al. | Initial development of the cubesail/ultrasail spacecraft | |
Alexander et al. | GeoSail: A novel solar sail mission concept for geospace | |
Rodriguez | Feasibility of passive cryogenic cooling for solar powered outer planetary missions | |
McInnes et al. | Solar sailing-mission opportunities and innovative technology demonstration | |
Dervan et al. | New Moon Explorer (NME) Robotic Precursor Mission Concept | |
Kinnison et al. | Practical Interstellar Probe Concepts: Mission Study Results | |
Priyanka et al. | Feasibility Study of Orbit Control Methods in CubeSats with Electric Propulsion for an Interplanetary Mission Pallavi Prasad, Yassir Debbah, Gabriel Valles Valverde, Vignesh Vishwanath, Stephan Mc Lean, Claudia Guerra, Angeliki Parisi-Ploumpi, Andy Navarro Brenes, Lokesh Kumar G, Gujjati Sathvik, Khushi Shah | |
Albers et al. | Magnetospheric Venus Space Explorers: A Proposal for Understanding the Plasma Environment of Induced Magnetospheres by Multi-Point Observations |