Germano et al., 2023 - Google Patents
A Programmable Gain Dynamic Residue Amplifier in 65nm CMOSGermano et al., 2023
- Document ID
- 8172642852665625064
- Author
- Germano M
- Bocco Ã
- Reyes B
- Publication year
- Publication venue
- 2023 Argentine Conference on Electronics (CAE)
External Links
Snippet
This paper presents the schematic and layout design of a fully differential dynamic residue amplifier in 65 nm CMOS technology, with application in a 2-stage SAR-pipelined ADC. A programmable gain is obtained varying both the common-mode current and the …
Classifications
-
- H—ELECTRICITY
- H03—BASIC ELECTRONIC CIRCUITRY
- H03M—CODING; DECODING; CODE CONVERSION IN GENERAL
- H03M1/00—Analogue/digital conversion; Digital/analogue conversion
- H03M1/12—Analogue/digital converters
- H03M1/34—Analogue value compared with reference values
- H03M1/36—Analogue value compared with reference values simultaneously only, i.e. parallel type
- H03M1/361—Analogue value compared with reference values simultaneously only, i.e. parallel type having a separate comparator and reference value for each quantisation level, i.e. full flash converter type
- H03M1/362—Analogue value compared with reference values simultaneously only, i.e. parallel type having a separate comparator and reference value for each quantisation level, i.e. full flash converter type the reference values being generated by a resistive voltage divider
- H03M1/365—Analogue value compared with reference values simultaneously only, i.e. parallel type having a separate comparator and reference value for each quantisation level, i.e. full flash converter type the reference values being generated by a resistive voltage divider the voltage divider being a single resistor string
-
- H—ELECTRICITY
- H03—BASIC ELECTRONIC CIRCUITRY
- H03M—CODING; DECODING; CODE CONVERSION IN GENERAL
- H03M1/00—Analogue/digital conversion; Digital/analogue conversion
- H03M1/12—Analogue/digital converters
- H03M1/34—Analogue value compared with reference values
- H03M1/38—Analogue value compared with reference values sequentially only, e.g. successive approximation type
- H03M1/44—Sequential comparisons in series-connected stages with change in value of analogue signal
-
- H—ELECTRICITY
- H03—BASIC ELECTRONIC CIRCUITRY
- H03M—CODING; DECODING; CODE CONVERSION IN GENERAL
- H03M1/00—Analogue/digital conversion; Digital/analogue conversion
- H03M1/12—Analogue/digital converters
- H03M1/34—Analogue value compared with reference values
- H03M1/38—Analogue value compared with reference values sequentially only, e.g. successive approximation type
- H03M1/46—Analogue value compared with reference values sequentially only, e.g. successive approximation type with digital/analogue converter for supplying reference values to converter
- H03M1/466—Analogue value compared with reference values sequentially only, e.g. successive approximation type with digital/analogue converter for supplying reference values to converter using switched capacitors
-
- H—ELECTRICITY
- H03—BASIC ELECTRONIC CIRCUITRY
- H03F—AMPLIFIERS
- H03F3/00—Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
- H03F3/45—Differential amplifiers
- H03F3/45071—Differential amplifiers with semiconductor devices only
- H03F3/45076—Differential amplifiers with semiconductor devices only characterised by the way of implementation of the active amplifying circuit in the differential amplifier
-
- H—ELECTRICITY
- H03—BASIC ELECTRONIC CIRCUITRY
- H03F—AMPLIFIERS
- H03F3/00—Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
- H03F3/45—Differential amplifiers
- H03F3/45071—Differential amplifiers with semiconductor devices only
- H03F3/45479—Differential amplifiers with semiconductor devices only characterised by the way of common mode signal rejection
- H03F3/45928—Differential amplifiers with semiconductor devices only characterised by the way of common mode signal rejection using IC blocks as the active amplifying circuit
-
- H—ELECTRICITY
- H03—BASIC ELECTRONIC CIRCUITRY
- H03M—CODING; DECODING; CODE CONVERSION IN GENERAL
- H03M1/00—Analogue/digital conversion; Digital/analogue conversion
- H03M1/12—Analogue/digital converters
- H03M1/14—Conversion in steps with each step involving the same or a different conversion means and delivering more than one bit
- H03M1/145—Conversion in steps with each step involving the same or a different conversion means and delivering more than one bit the steps being performed sequentially in series-connected stages
-
- H—ELECTRICITY
- H03—BASIC ELECTRONIC CIRCUITRY
- H03M—CODING; DECODING; CODE CONVERSION IN GENERAL
- H03M1/00—Analogue/digital conversion; Digital/analogue conversion
- H03M1/12—Analogue/digital converters
- H03M1/14—Conversion in steps with each step involving the same or a different conversion means and delivering more than one bit
- H03M1/16—Conversion in steps with each step involving the same or a different conversion means and delivering more than one bit with scale factor modification, i.e. by changing the amplification between the steps
- H03M1/164—Conversion in steps with each step involving the same or a different conversion means and delivering more than one bit with scale factor modification, i.e. by changing the amplification between the steps the steps being performed sequentially in series-connected stages
-
- H—ELECTRICITY
- H03—BASIC ELECTRONIC CIRCUITRY
- H03M—CODING; DECODING; CODE CONVERSION IN GENERAL
- H03M1/00—Analogue/digital conversion; Digital/analogue conversion
- H03M1/06—Continuously compensating for, or preventing, undesired influence of physical parameters
- H03M1/0617—Continuously compensating for, or preventing, undesired influence of physical parameters characterised by the use of methods or means not specific to a particular type of detrimental influence
- H03M1/0675—Continuously compensating for, or preventing, undesired influence of physical parameters characterised by the use of methods or means not specific to a particular type of detrimental influence using redundancy
-
- H—ELECTRICITY
- H03—BASIC ELECTRONIC CIRCUITRY
- H03M—CODING; DECODING; CODE CONVERSION IN GENERAL
- H03M1/00—Analogue/digital conversion; Digital/analogue conversion
- H03M1/66—Digital/analogue converters
- H03M1/74—Simultaneous conversion
- H03M1/80—Simultaneous conversion using weighted impedances
-
- H—ELECTRICITY
- H03—BASIC ELECTRONIC CIRCUITRY
- H03M—CODING; DECODING; CODE CONVERSION IN GENERAL
- H03M1/00—Analogue/digital conversion; Digital/analogue conversion
- H03M1/12—Analogue/digital converters
- H03M1/1205—Multiplexed conversion systems
-
- H—ELECTRICITY
- H03—BASIC ELECTRONIC CIRCUITRY
- H03M—CODING; DECODING; CODE CONVERSION IN GENERAL
- H03M1/00—Analogue/digital conversion; Digital/analogue conversion
- H03M1/06—Continuously compensating for, or preventing, undesired influence of physical parameters
- H03M1/0617—Continuously compensating for, or preventing, undesired influence of physical parameters characterised by the use of methods or means not specific to a particular type of detrimental influence
- H03M1/0634—Continuously compensating for, or preventing, undesired influence of physical parameters characterised by the use of methods or means not specific to a particular type of detrimental influence by averaging out the errors, e.g. using sliding scale
-
- H—ELECTRICITY
- H03—BASIC ELECTRONIC CIRCUITRY
- H03M—CODING; DECODING; CODE CONVERSION IN GENERAL
- H03M1/00—Analogue/digital conversion; Digital/analogue conversion
- H03M1/06—Continuously compensating for, or preventing, undesired influence of physical parameters
- H03M1/0617—Continuously compensating for, or preventing, undesired influence of physical parameters characterised by the use of methods or means not specific to a particular type of detrimental influence
- H03M1/0626—Continuously compensating for, or preventing, undesired influence of physical parameters characterised by the use of methods or means not specific to a particular type of detrimental influence by filtering
-
- H—ELECTRICITY
- H03—BASIC ELECTRONIC CIRCUITRY
- H03M—CODING; DECODING; CODE CONVERSION IN GENERAL
- H03M1/00—Analogue/digital conversion; Digital/analogue conversion
- H03M1/10—Calibration or testing
- H03M1/1009—Calibration
-
- H—ELECTRICITY
- H03—BASIC ELECTRONIC CIRCUITRY
- H03M—CODING; DECODING; CODE CONVERSION IN GENERAL
- H03M1/00—Analogue/digital conversion; Digital/analogue conversion
- H03M1/06—Continuously compensating for, or preventing, undesired influence of physical parameters
- H03M1/0602—Continuously compensating for, or preventing, undesired influence of physical parameters of deviations from the desired transfer characteristic
-
- H—ELECTRICITY
- H03—BASIC ELECTRONIC CIRCUITRY
- H03M—CODING; DECODING; CODE CONVERSION IN GENERAL
- H03M1/00—Analogue/digital conversion; Digital/analogue conversion
- H03M1/004—Reconfigurable analogue/digital or digital/analogue converters
-
- H—ELECTRICITY
- H03—BASIC ELECTRONIC CIRCUITRY
- H03F—AMPLIFIERS
- H03F2203/00—Indexing scheme relating to amplifiers with only discharge tubes or only semiconductor devices as amplifying elements covered by H03F3/00
- H03F2203/45—Indexing scheme relating to differential amplifiers
-
- H—ELECTRICITY
- H03—BASIC ELECTRONIC CIRCUITRY
- H03F—AMPLIFIERS
- H03F1/00—Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
-
- H—ELECTRICITY
- H03—BASIC ELECTRONIC CIRCUITRY
- H03H—IMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Luu et al. | A 12-bit 300-MS/s SAR ADC with inverter-based preamplifier and common-mode-regulation DAC in 14-nm CMOS FinFET | |
Yu et al. | A 9-bit 1.8 GS/s 44 mW pipelined ADC using linearized open-loop amplifiers | |
Liu et al. | A 12-bit 100-MS/s pipelined-SAR ADC with PVT-insensitive and gain-folding dynamic amplifier | |
Akter et al. | A 66-dB SNDR pipelined split-ADC in 40-nm CMOS using a class-AB residue amplifier | |
Akkaya et al. | An 8-bit 800 MS/s loop-unrolled SAR ADC with common-mode adaptive background offset calibration in 28 nm FDSOI | |
Elkafrawy et al. | Design and validation of a 10-bit current mode SAR ADC with 58.4 dB SFDR at 50 MS/s in 90 nm CMOS | |
Germano et al. | A Programmable Gain Dynamic Residue Amplifier in 65nm CMOS | |
EP4258554B1 (en) | Discrete-time offset correction circuit embedded in a residue amplifier in a pipelined analog-to-digital converter (adc) | |
Zhang et al. | A 12-bit 1.25 GS/s RF sampling pipelined ADC using a bandwidth-expanded residue amplifier with bias-free gain-boost technique | |
Dai-guo et al. | A 10-bit 1.2 GS/s 45 mW time-interleaved SAR ADC with background calibration | |
Elkafrawy et al. | A 10-bit 150MS/s current mode SAR ADC in 90nm CMOS | |
Fang et al. | A 12-b 1-GS/s 61-dB SNDR Pipelined-SAR ADC With Inverter-Based Residual Amplifier and Tunable Harmonic-Injecting Cross-Coupled-Pair for Distortion Cancelation Achieving 6.3 fJ/conv-step | |
Chandrashekar et al. | A 20-MS/s to 40-MS/s reconfigurable pipeline ADC implemented with parallel OTA scaling | |
Hogganvik et al. | A 2 GHz bandwidth, 6-bit inverter-based open-loop amplifier for high-speed ADCs | |
Elkafrawy et al. | A 10-bit reference free current mode SAR ADC with 58.4 dB SFDR at 50 MS/s in 90 nm CMOS | |
Movahedian et al. | A low voltage low power 8-bit folding/interpolating ADC with rail-to-rail input range | |
Ren et al. | A mismatch-independent DNL pipelined analog-to-digital converter | |
Fan et al. | A low-power 10-bit 250 MS/s dual-channel pipeline ADC in 0.18 μm CMOS | |
Goes et al. | A Temperature-Compensated Class-AB Parametric Residue Amplifier for SAR-Assisted Pipeline ADCs | |
Yang et al. | A 12-Bit 2-GS/s Pipelined ADC Front-End Stage with Aperture Error Tuning and Split MDAC | |
Wang et al. | A 10-bit 40 MS/s SAR ADC With a Low-Noise Low-Offset Dynamic Comparator and a High-Linearity Sampling Switch | |
Sung et al. | A comparison of second-order sigma-delta modulator between switched-capacitor and switched-current techniques | |
Sundström et al. | A 10b 1GS/s inverter-based pipeline ADC in 65nm CMOS | |
Minh et al. | A design of 10-bit 25-MS/s SAR ADC using separated clock frequencies with high speed comparator in 180nm CMOS | |
Zahrai et al. | A 12b 100ms/s highly power efficient pipelined adc for communication applications |