[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

Etchebest et al., 2005 - Google Patents

A structural alphabet for local protein structures: improved prediction methods

Etchebest et al., 2005

Document ID
8078509299640088683
Author
Etchebest C
Benros C
Hazout S
de Brevern A
Publication year
Publication venue
Proteins: Structure, Function, and Bioinformatics

External Links

Snippet

Three‐dimensional protein structures can be described with a library of 3D fragments that define a structural alphabet. We have previously proposed such an alphabet, composed of 16 patterns of five consecutive amino acids, called Protein Blocks (PBs). These PBs have …
Continue reading at onlinelibrary.wiley.com (other versions)

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F19/00Digital computing or data processing equipment or methods, specially adapted for specific applications
    • G06F19/10Bioinformatics, i.e. methods or systems for genetic or protein-related data processing in computational molecular biology
    • G06F19/16Bioinformatics, i.e. methods or systems for genetic or protein-related data processing in computational molecular biology for molecular structure, e.g. structure alignment, structural or functional relations, protein folding, domain topologies, drug targeting using structure data, involving two-dimensional or three-dimensional structures
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F19/00Digital computing or data processing equipment or methods, specially adapted for specific applications
    • G06F19/10Bioinformatics, i.e. methods or systems for genetic or protein-related data processing in computational molecular biology
    • G06F19/22Bioinformatics, i.e. methods or systems for genetic or protein-related data processing in computational molecular biology for sequence comparison involving nucleotides or amino acids, e.g. homology search, motif or SNP [Single-Nucleotide Polymorphism] discovery or sequence alignment
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F19/00Digital computing or data processing equipment or methods, specially adapted for specific applications
    • G06F19/10Bioinformatics, i.e. methods or systems for genetic or protein-related data processing in computational molecular biology
    • G06F19/28Bioinformatics, i.e. methods or systems for genetic or protein-related data processing in computational molecular biology for programming tools or database systems, e.g. ontologies, heterogeneous data integration, data warehousing or computing architectures
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F19/00Digital computing or data processing equipment or methods, specially adapted for specific applications
    • G06F19/10Bioinformatics, i.e. methods or systems for genetic or protein-related data processing in computational molecular biology
    • G06F19/18Bioinformatics, i.e. methods or systems for genetic or protein-related data processing in computational molecular biology for functional genomics or proteomics, e.g. genotype-phenotype associations, linkage disequilibrium, population genetics, binding site identification, mutagenesis, genotyping or genome annotation, protein-protein interactions or protein-nucleic acid interactions
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F19/00Digital computing or data processing equipment or methods, specially adapted for specific applications
    • G06F19/10Bioinformatics, i.e. methods or systems for genetic or protein-related data processing in computational molecular biology
    • G06F19/24Bioinformatics, i.e. methods or systems for genetic or protein-related data processing in computational molecular biology for machine learning, data mining or biostatistics, e.g. pattern finding, knowledge discovery, rule extraction, correlation, clustering or classification
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F19/00Digital computing or data processing equipment or methods, specially adapted for specific applications
    • G06F19/10Bioinformatics, i.e. methods or systems for genetic or protein-related data processing in computational molecular biology
    • G06F19/20Bioinformatics, i.e. methods or systems for genetic or protein-related data processing in computational molecular biology for hybridisation or gene expression, e.g. microarrays, sequencing by hybridisation, normalisation, profiling, noise correction models, expression ratio estimation, probe design or probe optimisation
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F19/00Digital computing or data processing equipment or methods, specially adapted for specific applications
    • G06F19/70Chemoinformatics, i.e. data processing methods or systems for the retrieval, analysis, visualisation, or storage of physicochemical or structural data of chemical compounds
    • G06F19/708Chemoinformatics, i.e. data processing methods or systems for the retrieval, analysis, visualisation, or storage of physicochemical or structural data of chemical compounds for data visualisation, e.g. molecular structure representations, graphics generation, display of maps or networks or other visual representations
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F19/00Digital computing or data processing equipment or methods, specially adapted for specific applications
    • G06F19/70Chemoinformatics, i.e. data processing methods or systems for the retrieval, analysis, visualisation, or storage of physicochemical or structural data of chemical compounds
    • G06F19/705Chemoinformatics, i.e. data processing methods or systems for the retrieval, analysis, visualisation, or storage of physicochemical or structural data of chemical compounds for database search of chemical structures, e.g. full structure search, substructure search, similarity search, pharmacophore search, 3D structure search
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/30Information retrieval; Database structures therefor; File system structures therefor
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06NCOMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computer systems based on biological models
    • G06N3/12Computer systems based on biological models using genetic models
    • G06N3/126Genetic algorithms, i.e. information processing using digital simulations of the genetic system
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06NCOMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N99/00Subject matter not provided for in other groups of this subclass
    • G06N99/005Learning machines, i.e. computer in which a programme is changed according to experience gained by the machine itself during a complete run

Similar Documents

Publication Publication Date Title
Etchebest et al. A structural alphabet for local protein structures: improved prediction methods
Zhang et al. TOUCHSTONE II: a new approach to ab initio protein structure prediction
Hamelryck et al. Sampling realistic protein conformations using local structural bias
de Brevern et al. Bayesian probabilistic approach for predicting backbone structures in terms of protein blocks
de Brevern et al. Extension of a local backbone description using a structural alphabet: a new approach to the sequence‐structure relationship
Camproux et al. A hidden markov model derived structural alphabet for proteins
Offmann et al. Local protein structures
Xu et al. Toward optimal fragment generations for ab initio protein structure assembly
Lindorff-Larsen et al. Protein folding and the organization of the protein topology universe
Karakaş et al. BCL:: Fold-de novo prediction of complex and large protein topologies by assembly of secondary structure elements
Fourrier et al. Use of a structural alphabet for analysis of short loops connecting repetitive structures
Benros et al. Assessing a novel approach for predicting local 3D protein structures from sequence
Martin et al. Analysis of an optimal hidden Markov model for secondary structure prediction
Yao et al. Efficient algorithms to explore conformation spaces of flexible protein loops
Olson et al. Prediction of protein loop conformations using multiscale modeling methods with physical energy scoring functions
Yang et al. Construction of a deep neural network energy function for protein physics
De Brevern et al. “Pinning strategy”: a novel approach for predicting the backbone structure in terms of protein blocks from sequence
Bornot et al. A new prediction strategy for long local protein structures using an original description
Tuffery et al. Dependency between consecutive local conformations helps assemble protein structures from secondary structures using Go potential and greedy algorithm
Li et al. Fragment‐based local statistical potentials derived by combining an alphabet of protein local structures with secondary structures and solvent accessibilities
Liu et al. Improving the orientation‐dependent statistical potential using a reference state
Rossi et al. A self-consistent knowledge-based approach to protein design
Lee et al. Benchmarking of TASSER_2. 0: an improved protein structure prediction algorithm with more accurate predicted contact restraints
Yang et al. Genetic algorithms for protein conformation sampling and optimization in a discrete backbone dihedral angle space
Dong et al. Analysis and prediction of protein local structure based on structure alphabets