[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

Zhao et al., 2024 - Google Patents

Load Balanced PIM-Based Graph Processing

Zhao et al., 2024

Document ID
7973059322282298893
Author
Zhao X
Chen S
Kang Y
Publication year
Publication venue
ACM Transactions on Design Automation of Electronic Systems

External Links

Snippet

Graph processing is widely used for many modern applications, such as social networks, recommendation systems, and knowledge graphs. However, processing large-scale graphs on traditional Von Neumann architectures is challenging due to the irregular graph data and …
Continue reading at dl.acm.org (other versions)

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F9/00Arrangements for programme control, e.g. control unit
    • G06F9/06Arrangements for programme control, e.g. control unit using stored programme, i.e. using internal store of processing equipment to receive and retain programme
    • G06F9/46Multiprogramming arrangements
    • G06F9/50Allocation of resources, e.g. of the central processing unit [CPU]
    • G06F9/5061Partitioning or combining of resources
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F9/00Arrangements for programme control, e.g. control unit
    • G06F9/06Arrangements for programme control, e.g. control unit using stored programme, i.e. using internal store of processing equipment to receive and retain programme
    • G06F9/46Multiprogramming arrangements
    • G06F9/50Allocation of resources, e.g. of the central processing unit [CPU]
    • G06F9/5005Allocation of resources, e.g. of the central processing unit [CPU] to service a request
    • G06F9/5027Allocation of resources, e.g. of the central processing unit [CPU] to service a request the resource being a machine, e.g. CPUs, Servers, Terminals
    • G06F9/505Allocation of resources, e.g. of the central processing unit [CPU] to service a request the resource being a machine, e.g. CPUs, Servers, Terminals considering the load
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F12/00Accessing, addressing or allocating within memory systems or architectures
    • G06F12/02Addressing or allocation; Relocation
    • G06F12/08Addressing or allocation; Relocation in hierarchically structured memory systems, e.g. virtual memory systems
    • G06F12/0802Addressing of a memory level in which the access to the desired data or data block requires associative addressing means, e.g. caches
    • G06F12/0806Multiuser, multiprocessor or multiprocessing cache systems
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F15/00Digital computers in general; Data processing equipment in general
    • G06F15/16Combinations of two or more digital computers each having at least an arithmetic unit, a programme unit and a register, e.g. for a simultaneous processing of several programmes
    • G06F15/163Interprocessor communication
    • G06F15/173Interprocessor communication using an interconnection network, e.g. matrix, shuffle, pyramid, star, snowflake
    • G06F15/17306Intercommunication techniques
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F15/00Digital computers in general; Data processing equipment in general
    • G06F15/16Combinations of two or more digital computers each having at least an arithmetic unit, a programme unit and a register, e.g. for a simultaneous processing of several programmes
    • G06F15/163Interprocessor communication
    • G06F15/173Interprocessor communication using an interconnection network, e.g. matrix, shuffle, pyramid, star, snowflake
    • G06F15/17356Indirect interconnection networks
    • G06F15/17368Indirect interconnection networks non hierarchical topologies
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F9/00Arrangements for programme control, e.g. control unit
    • G06F9/06Arrangements for programme control, e.g. control unit using stored programme, i.e. using internal store of processing equipment to receive and retain programme
    • G06F9/46Multiprogramming arrangements
    • G06F9/52Programme synchronisation; Mutual exclusion, e.g. by means of semaphores; Contention for resources among tasks
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F9/00Arrangements for programme control, e.g. control unit
    • G06F9/06Arrangements for programme control, e.g. control unit using stored programme, i.e. using internal store of processing equipment to receive and retain programme
    • G06F9/46Multiprogramming arrangements
    • G06F9/54Interprogramme communication; Intertask communication
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/30Information retrieval; Database structures therefor; File system structures therefor
    • G06F17/30286Information retrieval; Database structures therefor; File system structures therefor in structured data stores
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F11/00Error detection; Error correction; Monitoring
    • G06F11/07Error detection; Error correction; Monitoring responding to the occurence of a fault, e.g. fault tolerance
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F2209/00Indexing scheme relating to G06F9/00
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/06Digital input from or digital output to record carriers, e.g. RAID, emulated record carriers, networked record carriers
    • G06F3/0601Dedicated interfaces to storage systems
    • G06F3/0628Dedicated interfaces to storage systems making use of a particular technique
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F8/00Arrangements for software engineering
    • G06F8/40Transformations of program code
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/06Digital input from or digital output to record carriers, e.g. RAID, emulated record carriers, networked record carriers
    • G06F3/0601Dedicated interfaces to storage systems
    • G06F3/0602Dedicated interfaces to storage systems specifically adapted to achieve a particular effect

Similar Documents

Publication Publication Date Title
Chen et al. Powerlyra: Differentiated graph computation and partitioning on skewed graphs
Zhang et al. GraphP: Reducing communication for PIM-based graph processing with efficient data partition
Barker et al. Entering the petaflop era: the architecture and performance of Roadrunner
Sariyüce et al. Betweenness centrality on GPUs and heterogeneous architectures
Satish et al. Navigating the maze of graph analytics frameworks using massive graph datasets
Satish et al. Large-scale energy-efficient graph traversal: a path to efficient data-intensive supercomputing
Chu et al. Nv-group: link-efficient reduction for distributed deep learning on modern dense gpu systems
Gharaibeh et al. Efficient large-scale graph processing on hybrid CPU and GPU systems
Kim et al. CloudRAMSort: fast and efficient large-scale distributed RAM sort on shared-nothing cluster
Wang et al. Grus: Toward unified-memory-efficient high-performance graph processing on gpu
Addisie et al. Heterogeneous memory subsystem for natural graph analytics
Chen et al. ThunderGP: Resource-efficient graph processing framework on FPGAs with HLS
Wang et al. A conflict-free scheduler for high-performance graph processing on multi-pipeline FPGAs
Mohanamuraly et al. Hardware locality-aware partitioning and dynamic load-balancing of unstructured meshes for large-scale scientific applications
Zhao et al. Load Balanced PIM-Based Graph Processing
Kalnis et al. Mizan: Optimizing graph mining in large parallel systems
Mirsadeghi et al. PTRAM: A parallel topology-and routing-aware mapping framework for large-scale HPC systems
Faraji et al. Exploiting heterogeneity of communication channels for efficient GPU selection on multi-GPU nodes
Li et al. Dual buffer rotation four-stage pipeline for CPU–GPU cooperative computing
Addisie et al. Centaur: Hybrid processing in on/off-chip memory architecture for graph analytics
Wang et al. KLSAT: An application mapping algorithm based on Kernighan–Lin partition and simulated annealing for a specific WK-recursive NoC architecture
Fan et al. Scalable and efficient graph traversal on high-throughput cluster
Anastasiadis et al. PARALiA: A Performance Aware Runtime for Auto-tuning Linear Algebra on Heterogeneous Systems
Su et al. GraFlex: Flexible Graph Processing on FPGAs through Customized Scalable Interconnection Network
Liu et al. Topology‐Aware Strategy for MPI‐IO Operations in Clusters