Cunningham et al., 2018 - Google Patents
Nanoparticle-mediated delivery towards advancing plant genetic engineeringCunningham et al., 2018
View HTML- Document ID
- 7912782274357444519
- Author
- Cunningham F
- Goh N
- Demirer G
- Matos J
- Landry M
- Publication year
- Publication venue
- Trends in biotechnology
External Links
Snippet
Genetic engineering of plants has enhanced crop productivity in the face of climate change and a growing global population by conferring desirable genetic traits to agricultural crops. Efficient genetic transformation in plants remains a challenge due to the cell wall, a barrier to …
- 239000002105 nanoparticle 0 title abstract description 182
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICRO-ORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING OR MAINTAINING MICRO-ORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/79—Vectors or expression systems specially adapted for eukaryotic hosts
- C12N15/82—Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
- C12N15/8201—Methods for introducing genetic material into plant cells, e.g. DNA, RNA, stable or transient incorporation, tissue culture methods adapted for transformation
- C12N15/8206—Methods for introducing genetic material into plant cells, e.g. DNA, RNA, stable or transient incorporation, tissue culture methods adapted for transformation by physical or chemical, i.e. non-biological, means, e.g. electroporation, PEG mediated
- C12N15/8207—Methods for introducing genetic material into plant cells, e.g. DNA, RNA, stable or transient incorporation, tissue culture methods adapted for transformation by physical or chemical, i.e. non-biological, means, e.g. electroporation, PEG mediated by mechanical means, e.g. microinjection, particle bombardment, silicon whiskers
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICRO-ORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING OR MAINTAINING MICRO-ORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/87—Introduction of foreign genetic material using processes not otherwise provided for, e.g. co-transformation
- C12N15/89—Introduction of foreign genetic material using processes not otherwise provided for, e.g. co-transformation using micro-injection
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL, OR TOILET PURPOSES
- A61K47/00—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers, inert additives
- A61K47/48—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers, inert additives the non-active ingredient being chemically bound to the active ingredient, e.g. polymer drug conjugates
- A61K47/48769—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers, inert additives the non-active ingredient being chemically bound to the active ingredient, e.g. polymer drug conjugates the conjugate being characterized by a special physical or galenical form
- A61K47/48853—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers, inert additives the non-active ingredient being chemically bound to the active ingredient, e.g. polymer drug conjugates the conjugate being characterized by a special physical or galenical form the form being a particulate, powder, adsorbate, bead, sphere
- A61K47/48876—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers, inert additives the non-active ingredient being chemically bound to the active ingredient, e.g. polymer drug conjugates the conjugate being characterized by a special physical or galenical form the form being a particulate, powder, adsorbate, bead, sphere the form being a solid micro- or nanoparticle having no hollow or gas-filled core
- A61K47/48884—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers, inert additives the non-active ingredient being chemically bound to the active ingredient, e.g. polymer drug conjugates the conjugate being characterized by a special physical or galenical form the form being a particulate, powder, adsorbate, bead, sphere the form being a solid micro- or nanoparticle having no hollow or gas-filled core the form being a nanoparticle, e.g. an immuno-nanoparticle
- A61K47/48892—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers, inert additives the non-active ingredient being chemically bound to the active ingredient, e.g. polymer drug conjugates the conjugate being characterized by a special physical or galenical form the form being a particulate, powder, adsorbate, bead, sphere the form being a solid micro- or nanoparticle having no hollow or gas-filled core the form being a nanoparticle, e.g. an immuno-nanoparticle the material constituting the nanoparticle being a polymer
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL, OR TOILET PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/48—Preparations in capsules, e.g. of gelatin, of chocolate
- A61K9/50—Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
- A61K9/51—Nanocapsules; Nanoparticles
- A61K9/5107—Excipients; Inactive ingredients
- A61K9/513—Organic macromolecular compounds; Dendrimers
- A61K9/5146—Organic macromolecular compounds; Dendrimers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyethylene glycol, polyamines, polyanhydrides
- A61K9/5153—Polyesters, e.g. poly(lactide-co-glycolide)
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Cunningham et al. | Nanoparticle-mediated delivery towards advancing plant genetic engineering | |
Yan et al. | Nanotechnology strategies for plant genetic engineering | |
Kwak et al. | Chloroplast-selective gene delivery and expression in planta using chitosan-complexed single-walled carbon nanotube carriers | |
Demirer et al. | Delivering genes to plants | |
Jat et al. | Nanomaterial based gene delivery: a promising method for plant genome engineering | |
Riley et al. | Recent advances in nanomaterials for gene delivery—a review | |
Wang et al. | Carbon dots enable efficient delivery of functional DNA in plants | |
Chandrasekaran et al. | Carbon nanotubes: Plant gene delivery and genome editing | |
Hasnain et al. | Stimuli-responsive carbon nanotubes for targeted drug delivery | |
Ghogare et al. | Genome editing reagent delivery in plants | |
Xia et al. | From mouse to mouse‐ear cress: Nanomaterials as vehicles in plant biotechnology | |
Wang et al. | Nanoparticles for protein delivery in planta | |
Gad et al. | Nanomaterials for gene delivery and editing in plants: Challenges and future perspective | |
Ali et al. | DNA–Carbon nanotube binding mode determines the efficiency of carbon nanotube-mediated DNA delivery to intact plants | |
Laisney et al. | RNAi in Spodoptera frugiperda Sf9 cells via nanomaterial mediated delivery of dsRNA: A comparison of poly-l-arginine polyplexes and poly-l-arginine-functionalized Au nanoparticles | |
Cunningham et al. | Nanobiolistics: an emerging genetic transformation approach | |
Vats et al. | Opportunity and challenges for nanotechnology application for genome editing in plants | |
Peng et al. | Gene delivery strategies for therapeutic proteins production in plants: Emerging opportunities and challenges | |
Karimi et al. | Advances in Nanomaterials for Drug Delivery: Polymeric, nanocarbon and bio-inspired | |
Law et al. | Organelle-targeted gene delivery in plants by nanomaterials | |
Yong et al. | Enhancing plant biotechnology by nanoparticle delivery of nucleic acids | |
Sheikh Mohamed et al. | Application of nanotechnology in genetic improvement in crops | |
Okuzaki et al. | Efficient plastid transformation in tobacco using small gold particles (0.07–0.3 µm) | |
Zhang et al. | Advanced materials for intracellular delivery of plant cells: Strategies, mechanisms and applications | |
Sashidhar et al. | Nanobiotechnology for plant genome engineering and crop protection |