Pope et al., 2012 - Google Patents
Reactor physics behavior of transuranic-bearing TRISO-Particle fuel in a pressurized water reactorPope et al., 2012
View PDF- Document ID
- 7911054404360138110
- Author
- Pope M
- Sen R
- Ougouag A
- Youinou G
- Boer B
- Publication year
External Links
Snippet
Calculations have been performed to assess the neutronic behavior of pins of Fully-Ceramic Micro-encapsulated (FCM) fuel in otherwise-conventional Pressurized Water Reactor (PWR) fuel pins. The FCM fuel contains transuranic (TRU)-only oxide fuel in tri-isotropic (TRISO) …
- 239000000446 fuel 0 title abstract description 153
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GASES [GHG] EMISSION, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E30/00—Energy generation of nuclear origin
- Y02E30/30—Nuclear fission reactors
- Y02E30/38—Fuel
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GASES [GHG] EMISSION, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E30/00—Energy generation of nuclear origin
- Y02E30/30—Nuclear fission reactors
- Y02E30/40—Other aspects relating to nuclear fission
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GASES [GHG] EMISSION, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E30/00—Energy generation of nuclear origin
- Y02E30/30—Nuclear fission reactors
- Y02E30/34—Fast breeder reactors
-
- G—PHYSICS
- G21—NUCLEAR PHYSICS; NUCLEAR ENGINEERING
- G21C—NUCLEAR REACTORS
- G21C3/00—Reactor fuel elements and their assemblies; Selection of substances for use as reactor fuel elements
- G21C3/30—Assemblies of a number of fuel elements in the form of a rigid unit
- G21C3/32—Bundles of parallel pin-, rod-, or tube-shaped fuel elements
- G21C3/326—Bundles of parallel pin-, rod-, or tube-shaped fuel elements comprising fuel elements of different composition; comprising, in addition to the fuel elements, other pin-, rod-, or tube-shaped elements, e.g. control rods, grid support rods, fertile rods, poison rods or dummy rods
-
- G—PHYSICS
- G21—NUCLEAR PHYSICS; NUCLEAR ENGINEERING
- G21C—NUCLEAR REACTORS
- G21C3/00—Reactor fuel elements and their assemblies; Selection of substances for use as reactor fuel elements
- G21C3/02—Fuel elements
- G21C3/04—Constructional details
- G21C3/06—Casings; Jackets
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GASES [GHG] EMISSION, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E30/00—Energy generation of nuclear origin
- Y02E30/30—Nuclear fission reactors
- Y02E30/39—Control of nuclear reactions
-
- G—PHYSICS
- G21—NUCLEAR PHYSICS; NUCLEAR ENGINEERING
- G21C—NUCLEAR REACTORS
- G21C3/00—Reactor fuel elements and their assemblies; Selection of substances for use as reactor fuel elements
- G21C3/42—Selection of substances for use as reactor fuel
-
- G—PHYSICS
- G21—NUCLEAR PHYSICS; NUCLEAR ENGINEERING
- G21Y—INDEXING SCHEME RELATING TO NUCLEAR REACTORS, POWER PLANTS AND EXPLOSIVES, TO PROTECTION AGAINST RADIATION, TO THE TREATMENT OF RADIOACTIVELY CONTAMINATED MATERIAL, TO APPLICATIONS OF RADIOACTIVE SOURCES AND TO THE UTILISATION OF COSMIC RADIATION
- G21Y2004/00—SOLUTION
- G21Y2004/10—Compositions
-
- G—PHYSICS
- G21—NUCLEAR PHYSICS; NUCLEAR ENGINEERING
- G21Y—INDEXING SCHEME RELATING TO NUCLEAR REACTORS, POWER PLANTS AND EXPLOSIVES, TO PROTECTION AGAINST RADIATION, TO THE TREATMENT OF RADIOACTIVELY CONTAMINATED MATERIAL, TO APPLICATIONS OF RADIOACTIVE SOURCES AND TO THE UTILISATION OF COSMIC RADIATION
- G21Y2002/00—PROBLEM
- G21Y2002/201—Inadequate efficiency
-
- G—PHYSICS
- G21—NUCLEAR PHYSICS; NUCLEAR ENGINEERING
- G21C—NUCLEAR REACTORS
- G21C19/00—Arrangements for treating, for handling, or for facilitating the handling of, fuel or other materials which are used within the reactor, e.g. within its pressure vessel
-
- G—PHYSICS
- G21—NUCLEAR PHYSICS; NUCLEAR ENGINEERING
- G21Y—INDEXING SCHEME RELATING TO NUCLEAR REACTORS, POWER PLANTS AND EXPLOSIVES, TO PROTECTION AGAINST RADIATION, TO THE TREATMENT OF RADIOACTIVELY CONTAMINATED MATERIAL, TO APPLICATIONS OF RADIOACTIVE SOURCES AND TO THE UTILISATION OF COSMIC RADIATION
- G21Y2002/00—PROBLEM
- G21Y2002/104—Inadequate performance, deformation, cracks, rupture
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GASES [GHG] EMISSION, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
-
- G—PHYSICS
- G21—NUCLEAR PHYSICS; NUCLEAR ENGINEERING
- G21C—NUCLEAR REACTORS
- G21C7/00—Control of nuclear reaction
-
- G—PHYSICS
- G21—NUCLEAR PHYSICS; NUCLEAR ENGINEERING
- G21C—NUCLEAR REACTORS
- G21C5/00—Moderator or core structure; Selection of materials for use as moderator
-
- G—PHYSICS
- G21—NUCLEAR PHYSICS; NUCLEAR ENGINEERING
- G21C—NUCLEAR REACTORS
- G21C1/00—Reactors
-
- G—PHYSICS
- G21—NUCLEAR PHYSICS; NUCLEAR ENGINEERING
- G21D—NUCLEAR POWER PLANT
- G21D3/00—Control of nuclear power plant
- G21D3/001—Computer implemented control
-
- G—PHYSICS
- G21—NUCLEAR PHYSICS; NUCLEAR ENGINEERING
- G21F—PROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
- G21F5/00—Transportable or portable shielded containers
- G21F5/005—Containers for solid radioactive wastes, e.g. for ultimate disposal
- G21F5/008—Containers for fuel elements
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Trellue et al. | Neutronics and material attractiveness for PWR thorium systems using monte carlo techniques | |
Shelley et al. | Use of americium as a burnable absorber for VVER-1200 reactor | |
Pope et al. | Neutronic analysis of the burning of transuranics in fully ceramic micro-encapsulated tri-isotropic particle-fuel in a PWR | |
Insulander Björk et al. | Study of Thorium‐Plutonium Fuel for Possible Operating Cycle Extension in PWRs | |
Mustafa | Improving the reactor safety aspects by the implementation of (Th-U233-Pu) fuel in a PWR assembly | |
Nabila et al. | Neutronic and fuel cycle performance of LEU fuel with different means of excess reactivity control: Impact of neutron leakage and refueling scheme | |
Wang | Optimization of a seed and blanket thorium-uranium fuel cycle for pressurized water reactors | |
Bolukbasi et al. | Performance and economic assessment of enriched gadolinia burnable absorbers | |
Hartanto et al. | A compact breed and burn fast reactor using spent nuclear fuel blanket | |
Wojtaszek et al. | Reactor physics assessment of annular plutonium-thorium fuels for use in prismatic fuel blocks in a HTGR-SMR with a hydrogen-based moderator (7LiH) | |
Long | Modeling the performance of high burnup thoria and urania pwr fuel | |
Attom et al. | Comparison of homogeneous and heterogeneous thorium fuel blocks with four drivers in advanced high temperature reactors | |
Pope et al. | Reactor physics behavior of transuranic-bearing TRISO-Particle fuel in a pressurized water reactor | |
Gentry et al. | A neutronic investigation of the use of fully ceramic microencapsulated fuel for Pu/Np burning in PWRs | |
Taiwo et al. | Summary of Generation-IV transmutation impacts. | |
Radulescu et al. | Fuel Assembly Reference Information for SNF Radiation Source Term Calculations | |
Björk et al. | Comparison of thorium-plutonium fuel and MOX fuel for PWRs | |
Pope et al. | Performance of Transuranic-Loaded Fully Ceramic Micro-Encapsulated Fuel in LWRs Final Report, Including Void Reactivity Evaluation | |
Rabir et al. | A neutronic investigation of tristructural isotropic‐duplex fuel in a high‐temperature reactor prismatic seed‐and‐blanket fuel block configuration with reduced power peaking | |
Gholamzadeh et al. | Neutronics investigation of CANada Deuterium Uranium 6 reactor fueled (transuranic–Th) O2 using a computational method | |
Hong et al. | Annular fast reactor cores with low sodium void worth for TRU burning | |
Pavlovichev et al. | Neutron-physical characteristics of a VVER-1000 core with 100% fuel load consisting of a mixture of recovered uranium and plutonium and enriched uranium | |
Ganda et al. | Plutonium recycling in hydride fueled PWR cores | |
Khoshahval | AP1000 fuel assembly reactivity flattening using a novel candidate composite burnable absorber | |
Wigeland et al. | Repository benefits of partitioning and transmutation |