[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

Al-Oqily et al., 2009 - Google Patents

Towards automating overlay network management

Al-Oqily et al., 2009

Document ID
7846788218355831715
Author
Al-Oqily I
Karmouch A
Publication year
Publication venue
Journal of network and computer applications

External Links

Snippet

Overlay networks are becoming widely used for content delivery because they provide effective and reliable services that are not otherwise available. However, they can negatively affect each other as well as the underlying network. A management system that controls and …
Continue reading at www.sciencedirect.com (other versions)

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L67/00Network-specific arrangements or communication protocols supporting networked applications
    • H04L67/10Network-specific arrangements or communication protocols supporting networked applications in which an application is distributed across nodes in the network
    • H04L67/1002Network-specific arrangements or communication protocols supporting networked applications in which an application is distributed across nodes in the network for accessing one among a plurality of replicated servers, e.g. load balancing
    • H04L67/1004Server selection in load balancing
    • H04L67/1014Server selection in load balancing based on the content of a request
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L67/00Network-specific arrangements or communication protocols supporting networked applications
    • H04L67/10Network-specific arrangements or communication protocols supporting networked applications in which an application is distributed across nodes in the network
    • H04L67/104Network-specific arrangements or communication protocols supporting networked applications in which an application is distributed across nodes in the network for peer-to-peer [P2P] networking; Functionalities or architectural details of P2P networks
    • H04L67/1087Network-specific arrangements or communication protocols supporting networked applications in which an application is distributed across nodes in the network for peer-to-peer [P2P] networking; Functionalities or architectural details of P2P networks involving cross functional networking aspects
    • H04L67/1093Some peer nodes performing special functions
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/54Store-and-forward switching systems
    • H04L12/56Packet switching systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L29/00Arrangements, apparatus, circuits or systems, not covered by a single one of groups H04L1/00 - H04L27/00 contains provisionally no documents
    • H04L29/02Communication control; Communication processing contains provisionally no documents
    • H04L29/06Communication control; Communication processing contains provisionally no documents characterised by a protocol
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/02Details
    • H04L12/16Arrangements for providing special services to substations contains provisionally no documents
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L69/00Application independent communication protocol aspects or techniques in packet data networks
    • H04L69/30Definitions, standards or architectural aspects of layered protocol stacks
    • H04L69/32High level architectural aspects of 7-layer open systems interconnection [OSI] type protocol stacks
    • H04L69/322Aspects of intra-layer communication protocols among peer entities or protocol data unit [PDU] definitions
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks
    • H04L45/02Topology update or discovery
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L67/00Network-specific arrangements or communication protocols supporting networked applications
    • H04L67/32Network-specific arrangements or communication protocols supporting networked applications for scheduling or organising the servicing of application requests, e.g. requests for application data transmissions involving the analysis and optimisation of the required network resources
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L47/00Traffic regulation in packet switching networks
    • H04L47/10Flow control or congestion control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L67/00Network-specific arrangements or communication protocols supporting networked applications
    • H04L67/28Network-specific arrangements or communication protocols supporting networked applications for the provision of proxy services, e.g. intermediate processing or storage in the network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance or administration or management of packet switching networks
    • H04L41/50Network service management, i.e. ensuring proper service fulfillment according to an agreement or contract between two parties, e.g. between an IT-provider and a customer
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L65/00Network arrangements or protocols for real-time communications
    • H04L65/80QoS aspects
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L43/00Arrangements for monitoring or testing packet switching networks
    • H04L43/08Monitoring based on specific metrics
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L63/00Network architectures or network communication protocols for network security
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATIONS NETWORKS

Similar Documents

Publication Publication Date Title
Mukerjee et al. Practical, real-time centralized control for cdn-based live video delivery
Oktian et al. Distributed SDN controller system: A survey on design choice
Shanbhag et al. SoCCeR: Services over content-centric routing
EP2901308B1 (en) Load distribution in data networks
JP5986162B2 (en) Quality of service (QOS) based systems, networks, and advisors
Trossen et al. Towards an information centric network architecture for universal internet access
Bagies et al. Content delivery network for IoT-based Fog Computing environment
CN109639502B (en) Return source control method and content distribution network
Al-Oqily et al. Towards automating overlay network management
Saifullah et al. Open flow-based server load balancing using improved server health reports
Wang et al. Game-theoretic model of asymmetrical multipath selection in pervasive computing environment
Al-Oqily et al. Policy-based context-aware overlay networks
D’Alessandro Costa et al. Performance analysis of a locality-aware BitTorrent protocol in enterprise networks
Jaseemuddin et al. TE-friendly content delivery request routing in a CDN
Ju et al. On building a low latency network for future internet services
Al-Oqily et al. A decentralized self-organizing service composition for autonomic entities
Al-Oqily et al. Automating overlay networks management
Abdullahi et al. Proposed enhanced link failure rerouting mechanism for software-defined exchange point
Mundur et al. Optimal server allocations for streaming multimedia applications on the Internet
Shih et al. Service recovery for large scale distributed publish and subscription services for cyber-physical systems and disaster management
Wang et al. Design and evaluation of load balancing algorithms in P2P streaming protocols
Hashim et al. An active anycast rtt-based server selection technique
AlSabah et al. The path less travelled: Overcoming Tor’s bottlenecks with multipaths
Tang et al. CORS: A cooperative overlay routing service to enhance interactive multimedia communications
Fischer Construction of Attack-Resilient and Efficient Overlay-Topologies for Large-Scale P2P-based IPTV Infrastructures