Wang et al., 2020 - Google Patents
Application of multi-feature fusion and random forests to the automated detection of myocardial infarctionWang et al., 2020
- Document ID
- 7795943474847957338
- Author
- Wang Z
- Qian L
- Han C
- Shi L
- Publication year
- Publication venue
- Cognitive Systems Research
External Links
Snippet
Myocardial infarction (MI) was one of the most threatening cardiovascular diseases due to its suddenness and high mortality. Electrocardiography (ECG) reflected the electrophysiological activity of the heart which was widely used for the diagnosis of MI. The …
- 208000010125 Myocardial Infarction 0 title abstract description 72
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Detecting, measuring or recording for diagnostic purposes; Identification of persons
- A61B5/72—Signal processing specially adapted for physiological signals or for diagnostic purposes
- A61B5/7235—Details of waveform analysis
- A61B5/7253—Details of waveform analysis characterised by using transforms
- A61B5/726—Details of waveform analysis characterised by using transforms using Wavelet transforms
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Detecting, measuring or recording for diagnostic purposes; Identification of persons
- A61B5/04—Detecting, measuring or recording bioelectric signals of the body of parts thereof
- A61B5/0402—Electrocardiography, i.e. ECG
- A61B5/0452—Detecting specific parameters of the electrocardiograph cycle
- A61B5/0468—Detecting abnormal ECG interval, e.g. extrasystoles, ectopic heartbeats
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Detecting, measuring or recording for diagnostic purposes; Identification of persons
- A61B5/04—Detecting, measuring or recording bioelectric signals of the body of parts thereof
- A61B5/0402—Electrocardiography, i.e. ECG
- A61B5/0452—Detecting specific parameters of the electrocardiograph cycle
- A61B5/046—Detecting fibrillation
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Detecting, measuring or recording for diagnostic purposes; Identification of persons
- A61B5/04—Detecting, measuring or recording bioelectric signals of the body of parts thereof
- A61B5/0402—Electrocardiography, i.e. ECG
- A61B5/0452—Detecting specific parameters of the electrocardiograph cycle
- A61B5/04525—Detecting specific parameters of the electrocardiograph cycle by template matching
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Detecting, measuring or recording for diagnostic purposes; Identification of persons
- A61B5/72—Signal processing specially adapted for physiological signals or for diagnostic purposes
- A61B5/7235—Details of waveform analysis
- A61B5/7264—Classification of physiological signals or data, e.g. using neural networks, statistical classifiers, expert systems or fuzzy systems
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Detecting, measuring or recording for diagnostic purposes; Identification of persons
- A61B5/72—Signal processing specially adapted for physiological signals or for diagnostic purposes
- A61B5/7235—Details of waveform analysis
- A61B5/7239—Details of waveform analysis using differentiation including higher order derivatives
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F19/00—Digital computing or data processing equipment or methods, specially adapted for specific applications
- G06F19/30—Medical informatics, i.e. computer-based analysis or dissemination of patient or disease data
- G06F19/34—Computer-assisted medical diagnosis or treatment, e.g. computerised prescription or delivery of medication or diets, computerised local control of medical devices, medical expert systems or telemedicine
- G06F19/345—Medical expert systems, neural networks or other automated diagnosis
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Detecting, measuring or recording for diagnostic purposes; Identification of persons
- A61B5/02—Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
- A61B5/024—Detecting, measuring or recording pulse rate or heart rate
- A61B5/02411—Detecting, measuring or recording pulse rate or heart rate of foetuses
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Detecting, measuring or recording for diagnostic purposes; Identification of persons
- A61B5/04—Detecting, measuring or recording bioelectric signals of the body of parts thereof
- A61B5/04012—Analysis of electro-cardiograms, electro-encephalograms, electro-myograms
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Detecting, measuring or recording for diagnostic purposes; Identification of persons
- A61B5/72—Signal processing specially adapted for physiological signals or for diagnostic purposes
- A61B5/7203—Signal processing specially adapted for physiological signals or for diagnostic purposes for noise prevention, reduction or removal
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Detecting, measuring or recording for diagnostic purposes; Identification of persons
- A61B5/72—Signal processing specially adapted for physiological signals or for diagnostic purposes
- A61B5/7232—Signal processing specially adapted for physiological signals or for diagnostic purposes involving compression of the physiological signal, e.g. to extend the signal recording period
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Detecting, measuring or recording for diagnostic purposes; Identification of persons
- A61B5/72—Signal processing specially adapted for physiological signals or for diagnostic purposes
- A61B5/7225—Details of analog processing, e.g. isolation amplifier, gain or sensitivity adjustment, filtering, baseline or drift compensation
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Detecting, measuring or recording for diagnostic purposes; Identification of persons
- A61B5/72—Signal processing specially adapted for physiological signals or for diagnostic purposes
- A61B5/7271—Specific aspects of physiological measurement analysis
- A61B5/7285—Specific aspects of physiological measurement analysis for synchronising or triggering a physiological measurement or image acquisition with a physiological event or waveform, e.g. an ECG signal
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Detecting, measuring or recording for diagnostic purposes; Identification of persons
- A61B5/0033—Features or image-related aspects of imaging apparatus classified in A61B5/00, e.g. for MRI, optical tomography or impedance tomography apparatus; arrangements of imaging apparatus in a room
- A61B5/004—Features or image-related aspects of imaging apparatus classified in A61B5/00, e.g. for MRI, optical tomography or impedance tomography apparatus; arrangements of imaging apparatus in a room adapted for image acquisition of a particular organ or body part
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Detecting, measuring or recording for diagnostic purposes; Identification of persons
- A61B5/05—Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radiowaves
- A61B5/053—Measuring electrical impedance or conductance of a portion of the body
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Xu et al. | Interpretation of electrocardiogram (ECG) rhythm by combined CNN and BiLSTM | |
Ansari et al. | A review of automated methods for detection of myocardial ischemia and infarction using electrocardiogram and electronic health records | |
Behar et al. | A comparison of single channel fetal ECG extraction methods | |
Acharya et al. | Automated detection of arrhythmias using different intervals of tachycardia ECG segments with convolutional neural network | |
Mohebbian et al. | Fetal ECG extraction from maternal ECG using attention-based CycleGAN | |
Sharma et al. | A novel hybrid deep learning method with cuckoo search algorithm for classification of arrhythmia disease using ECG signals | |
Dai et al. | Convolutional neural network based automatic screening tool for cardiovascular diseases using different intervals of ECG signals | |
Król-Józaga | Atrial fibrillation detection using convolutional neural networks on 2-dimensional representation of ECG signal | |
Kara et al. | Atrial fibrillation classification with artificial neural networks | |
Wang et al. | Application of multi-feature fusion and random forests to the automated detection of myocardial infarction | |
Zeng et al. | Classification of myocardial infarction based on hybrid feature extraction and artificial intelligence tools by adopting tunable-Q wavelet transform (TQWT), variational mode decomposition (VMD) and neural networks | |
Feng et al. | Unsupervised semantic-aware adaptive feature fusion network for arrhythmia detection | |
Mandal et al. | Detection of Ventricular Arrhythmia by using Heart rate variability signal and ECG beat image | |
Gupta | Wavelet transform and vector machines as emerging tools for computational medicine | |
Fang et al. | A visually interpretable detection method combines 3-D ECG with a multi-VGG neural network for myocardial infarction identification | |
Ansari et al. | Estimating age and gender from electrocardiogram signals: A comprehensive review of the past decade | |
Singhal et al. | A systematic review on artificial intelligence-based techniques for diagnosis of cardiovascular arrhythmia diseases: challenges and opportunities | |
Li et al. | Signal processing and feature selection preprocessing for classification in noisy healthcare data | |
Karri et al. | A real-time embedded system to detect QRS-complex and arrhythmia classification using LSTM through hybridized features | |
De Gaetano et al. | A patient adaptable ECG beat classifier based on neural networks | |
Ji et al. | MSGformer: A multi-scale grid transformer network for 12-lead ECG arrhythmia detection | |
Zeng et al. | Ensemble learning on heartbeat type classification | |
Sun et al. | Early detection of myocardial ischemia in 12‐lead ECG using deterministic learning and ensemble learning | |
Zhao et al. | Ecgnn: Enhancing abnormal recognition in 12-lead ecg with graph neural network | |
Berger et al. | Generative adversarial networks in electrocardiogram synthesis: Recent developments and challenges |