Moseng et al., 2004 - Google Patents
Merit based scheduling in asynchronous bufferless optical packet switched networksMoseng et al., 2004
View PDF- Document ID
- 7676036284252150003
- Author
- Moseng T
- Øverby H
- Stol N
- Publication year
- Publication venue
- Proceedings of Norsk Informatikk Konferanse (NIK)
External Links
Snippet
This paper describes how Merit Based Scheduling (MBS) can be used to increase the average throughput in an asynchronous bufferless Optical Packet Switched (OPS) network. Basically, MBS means that packets are forwarded based on its merit, which includes priority …
- 230000003287 optical 0 title abstract description 25
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L12/00—Data switching networks
- H04L12/54—Store-and-forward switching systems
- H04L12/56—Packet switching systems
- H04L12/5601—Transfer mode dependent, e.g. ATM
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L47/00—Traffic regulation in packet switching networks
- H04L47/10—Flow control or congestion control
- H04L47/24—Flow control or congestion control depending on the type of traffic, e.g. priority or quality of service [QoS]
- H04L47/2425—Service specification, e.g. SLA
- H04L47/2433—Allocation of priorities to traffic types
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L47/00—Traffic regulation in packet switching networks
- H04L47/10—Flow control or congestion control
- H04L47/24—Flow control or congestion control depending on the type of traffic, e.g. priority or quality of service [QoS]
- H04L47/2441—Flow classification
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L12/00—Data switching networks
- H04L12/54—Store-and-forward switching systems
- H04L12/56—Packet switching systems
- H04L12/5695—Admission control; Resource allocation
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04Q—SELECTING
- H04Q11/00—Selecting arrangements for multiplex systems
- H04Q11/0001—Selecting arrangements for multiplex systems using optical switching
- H04Q11/0062—Network aspects
- H04Q11/0066—Provisions for optical burst or packet networks
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04Q—SELECTING
- H04Q11/00—Selecting arrangements for multiplex systems
- H04Q11/0001—Selecting arrangements for multiplex systems using optical switching
- H04Q11/0005—Switch and router aspects
- H04Q2011/0037—Operation
- H04Q2011/0039—Electrical control
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L47/00—Traffic regulation in packet switching networks
- H04L47/10—Flow control or congestion control
- H04L47/12—Congestion avoidance or recovery
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L49/00—Packet switching elements
- H04L49/25—Routing or path finding through a switch fabric
- H04L49/253—Connections establishment or release between ports
- H04L49/254—Centralized controller, i.e. arbitration or scheduling
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04Q—SELECTING
- H04Q11/00—Selecting arrangements for multiplex systems
- H04Q11/0001—Selecting arrangements for multiplex systems using optical switching
- H04Q11/0005—Switch and router aspects
- H04Q2011/0007—Construction
- H04Q2011/0033—Construction using time division switching
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04Q—SELECTING
- H04Q11/00—Selecting arrangements for multiplex systems
- H04Q11/0001—Selecting arrangements for multiplex systems using optical switching
- H04Q11/0005—Switch and router aspects
- H04Q2011/0007—Construction
- H04Q2011/0016—Construction using wavelength multiplexing or demultiplexing
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04Q—SELECTING
- H04Q11/00—Selecting arrangements for multiplex systems
- H04Q11/0001—Selecting arrangements for multiplex systems using optical switching
- H04Q11/0005—Switch and router aspects
- H04Q2011/0007—Construction
- H04Q2011/0018—Construction using tunable transmitters or receivers
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L47/00—Traffic regulation in packet switching networks
- H04L47/10—Flow control or congestion control
- H04L47/19—Flow control or congestion control at layers above network layer
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L45/00—Routing or path finding of packets in data switching networks
- H04L45/30—Special provisions for routing multiclass traffic
- H04L45/302—Route determination based on requested QoS
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L47/00—Traffic regulation in packet switching networks
- H04L47/50—Queue scheduling
- H04L47/62—General aspects
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L49/00—Packet switching elements
- H04L49/50—Overload detection; Overload protection
- H04L49/505—Corrective Measures, e.g. backpressure
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L49/00—Packet switching elements
- H04L49/30—Peripheral units, e.g. input or output ports
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L12/00—Data switching networks
- H04L12/64—Hybrid switching systems
- H04L12/6402—Hybrid switching fabrics
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04J—MULTIPLEX COMMUNICATION
- H04J14/00—Optical multiplex systems
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Vokkarane et al. | Prioritized burst segmentation and composite burst-assembly techniques for QoS support in optical burst-switched networks | |
Qiao et al. | Optical burst switching (OBS)–a new paradigm for an Optical Internet^{1} | |
Vokkarane et al. | Threshold-based burst assembly policies for QoS support in optical burst-switched networks | |
Yoo et al. | New optical burst-switching protocol for supporting quality of service | |
Zhou et al. | Improving fairness in optical-burst-switching networks | |
Kaheel et al. | A strict priority scheme for quality-of-service provisioning in optical burst switching networks | |
Moseng et al. | Merit based scheduling in asynchronous bufferless optical packet switched networks | |
Garg et al. | Performance analysis of an integrated scheme in optical burst switching high-speed networks | |
Sheeshia et al. | Synchronous optical burst switching | |
Kim et al. | Optical burst switching with limited deflection routing rules | |
Bjornstad et al. | Optical burst and packet switching: Node and network design, contention resolution and Quality of Service | |
Lee et al. | A study on deflection routing in optical burst-switched networks | |
Sam et al. | Study of QoS performance in optical burst switched networks (OBS) | |
Yao et al. | Contention resolution in optical packet switching | |
Li et al. | Novel resource reservation schemes for optical burst switching | |
Mountrouidou et al. | A zero burst loss architecture for star OBS networks | |
Hirota et al. | A novel cooperation method for routing and wavelength assignment in optical burst switched networks | |
Hirota et al. | Cooperation method considering wavelength assignment and routing problem in optical burst switched networks | |
Sanghapi et al. | Adaptive burst assembly mechanism for OBS networks using control channel availability | |
Turuk et al. | A novel scheme to reduce burst-loss and provide QoS in optical burst switching networks | |
Cameron et al. | Shortest path prioritized random deflection routing (sp-prdr) in optical burst switched networks | |
Liu et al. | A universal signaling, switching and reservation framework for future optical networks | |
Rahbar et al. | An integrated TDM architecture for AAPN networks | |
Rahbar et al. | A new bandwidth access framework in slotted-OPS networks | |
Pallavi et al. | A simple node architecture for optical burst switching |