Ismaeel et al., 2017 - Google Patents
Review and comparative analysis of vortex generation systems for sustainable electric power productionIsmaeel et al., 2017
View PDF- Document ID
- 7541906286434786711
- Author
- Ismaeel A
- Al‐Kayiem H
- Baheta A
- Aurybi M
- Publication year
- Publication venue
- IET Renewable Power Generation
External Links
Snippet
This study presents a review and comparison on the power generation by artificial vortex approach. The basic principles of the artificial vortex theory are presented to comprehend the topic. The main characteristics of the components, working principles and features of the …
- 238000004519 manufacturing process 0 title abstract description 14
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GASES [GHG] EMISSION, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/70—Wind energy
- Y02E10/74—Wind turbines with rotation axis perpendicular to the wind direction
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GASES [GHG] EMISSION, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/70—Wind energy
- Y02E10/72—Wind turbines with rotation axis in wind direction
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GASES [GHG] EMISSION, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/40—Solar thermal energy
- Y02E10/46—Conversion of thermal power into mechanical power, e.g. Rankine, Stirling solar thermal engines
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING ENGINES OR PUMPS
- F03—MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING WEIGHT AND MISCELLANEOUS MOTORS; PRODUCING MECHANICAL POWER; OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
- F03D—WIND MOTORS
- F03D3/00—Wind motors with rotation axis substantially at right-angles to wind direction
- F03D3/04—Wind motors with rotation axis substantially at right-angles to wind direction having stationary wind-guiding means, e.g. with shrouds or channels
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING ENGINES OR PUMPS
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05B—INDEXING SCHEME RELATING TO MACHINES OR ENGINES OTHER THAN NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, TO WIND MOTORS, TO NON-POSITIVE DISPLACEMENT PUMPS, AND TO GENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY
- F05B2240/00—Components
- F05B2240/10—Stators
- F05B2240/13—Stators to collect or cause flow towards or away from turbines
- F05B2240/131—Stators to collect or cause flow towards or away from turbines by means of vertical structures, i.e. chimneys
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING ENGINES OR PUMPS
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05B—INDEXING SCHEME RELATING TO MACHINES OR ENGINES OTHER THAN NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, TO WIND MOTORS, TO NON-POSITIVE DISPLACEMENT PUMPS, AND TO GENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY
- F05B2240/00—Components
- F05B2240/90—Mounting on supporting structures or systems
- F05B2240/91—Mounting on supporting structures or systems on a stationary structure
- F05B2240/911—Mounting on supporting structures or systems on a stationary structure already existing for a prior purpose
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING ENGINES OR PUMPS
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05B—INDEXING SCHEME RELATING TO MACHINES OR ENGINES OTHER THAN NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, TO WIND MOTORS, TO NON-POSITIVE DISPLACEMENT PUMPS, AND TO GENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY
- F05B2240/00—Components
- F05B2240/10—Stators
- F05B2240/13—Stators to collect or cause flow towards or away from turbines
- F05B2240/133—Stators to collect or cause flow towards or away from turbines with a convergent-divergent guiding structure, e.g. a Venturi conduit
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING ENGINES OR PUMPS
- F03—MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING WEIGHT AND MISCELLANEOUS MOTORS; PRODUCING MECHANICAL POWER; OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
- F03G—SPRING, WEIGHT, INERTIA OR LIKE MOTORS; MECHANICAL-POWER PRODUCING DEVICES OR MECHANISMS, NOT OTHERWISE PROVIDED FOR OR USING ENERGY SOURCES NOT OTHERWISE PROVIDED FOR
- F03G7/00—Mechanical-power-producing mechanisms, not otherwise provided for or using energy sources not otherwise provided for
- F03G7/04—Mechanical-power-producing mechanisms, not otherwise provided for or using energy sources not otherwise provided for using pressure differences or thermal differences occurring in nature
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING ENGINES OR PUMPS
- F03—MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING WEIGHT AND MISCELLANEOUS MOTORS; PRODUCING MECHANICAL POWER; OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
- F03D—WIND MOTORS
- F03D3/00—Wind motors with rotation axis substantially at right-angles to wind direction
- F03D3/06—Rotor
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING ENGINES OR PUMPS
- F03—MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING WEIGHT AND MISCELLANEOUS MOTORS; PRODUCING MECHANICAL POWER; OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
- F03D—WIND MOTORS
- F03D1/00—Wind motors with rotation axis substantially in wind direction
- F03D1/04—Wind motors with rotation axis substantially in wind direction having stationary wind-guiding means, e.g. with shrouds or channels
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Ismaeel et al. | Review and comparative analysis of vortex generation systems for sustainable electric power production | |
Sorensen | Renewable energy conversion, transmission, and storage | |
Choi et al. | Development of analytical model for solar chimney power plant with and without water storage system | |
EP2457319B1 (en) | Generating electrical power utilizing surface-level hot air as the heat source, high atmosphere as the heat sink and a microwave beam to initiate and control air updraft | |
Zhou et al. | Influence of atmospheric cross flow on solar updraft tower inflow | |
Tawalbeh et al. | Analysis for hybrid photovoltaic/solar chimney seawater desalination plant: a CFD simulation in Sharjah, United Arab Emirates | |
Aravindhan et al. | Recent developments and issues of small-scale wind turbines in urban residential buildings-A review | |
Nižetić | Carbon free electricity production from the alternative energy concepts based on the utilization of the convective vortex systems as a heat engines: Review of the current status and perspective | |
Zuo et al. | A vortex-type solar updraft power-desalination integrated system | |
Too et al. | A brief review on solar updraft power plant | |
Nizetic | Technical utilisation of convective vortices for carbon-free electricity production: A review | |
Aravindhan et al. | Performance analysis of various types of ducted wind turbines–A review | |
Jameei et al. | Numerical study of the influence of geometric form of chimney on the performance of a solar updraft tower power plant | |
Semai et al. | Effect of slope tower angle and thermal storage media on flexibility solar chimney power plant performance | |
Khelifi et al. | Analytical modeling and optimization of a solar chimney power plant | |
Natarajan | Numerical simulation of tornado-like vortices | |
Raney et al. | Experimental validation of solar chimney performance models and operational characteristics for small scale remote applications | |
Islamuddin et al. | Simulation of solar chimney power plant with an external heat source | |
Aravindhan et al. | Performance analysis of shrouded invelox wind collector in the built environment | |
Bejan et al. | The constructal law and the design of the biosphere: nature and globalization | |
Cheridi et al. | Realization and experimentation of a novel vortex cooling tower | |
Zhou et al. | Daily dynamic performance of a solar chimney power plant integrated by waste heat recovery | |
Rashid et al. | Design of Solar Chimney with Spherical Collector for Electricity Production | |
Michaud et al. | The sky's the limit | |
Michaud et al. | Energy from convective vortices |