[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

Karan, 2023 - Google Patents

Speech-Based Parkinson's Disease Prediction Using XGBoost-Based Features Selection and the Stacked Ensemble of Classifiers

Karan, 2023

Document ID
7411675264622181517
Author
Karan B
Publication year
Publication venue
Journal of The Institution of Engineers (India): Series B

External Links

Snippet

Parkinson's disease (PD) is a neuron-related disorder due to the decrease in dopaminergic neurons present in the midbrain. For the last few decades, speech is an emerging interest in the analysis and detection of PD. In this study, a predictive machine learning framework …
Continue reading at link.springer.com (other versions)

Classifications

    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS OR SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING; SPEECH OR AUDIO CODING OR DECODING
    • G10L17/00Speaker identification or verification
    • G10L17/26Recognition of special voice characteristics, e.g. for use in lie detectors; Recognition of animal voices
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS OR SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING; SPEECH OR AUDIO CODING OR DECODING
    • G10L25/00Speech or voice analysis techniques not restricted to a single one of groups G10L15/00-G10L21/00
    • G10L25/48Speech or voice analysis techniques not restricted to a single one of groups G10L15/00-G10L21/00 specially adapted for particular use
    • G10L25/51Speech or voice analysis techniques not restricted to a single one of groups G10L15/00-G10L21/00 specially adapted for particular use for comparison or discrimination
    • G10L25/66Speech or voice analysis techniques not restricted to a single one of groups G10L15/00-G10L21/00 specially adapted for particular use for comparison or discrimination for extracting parameters related to health condition
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06KRECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K9/00Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
    • G06K9/62Methods or arrangements for recognition using electronic means
    • G06K9/6267Classification techniques
    • G06K9/6268Classification techniques relating to the classification paradigm, e.g. parametric or non-parametric approaches
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F19/00Digital computing or data processing equipment or methods, specially adapted for specific applications
    • G06F19/30Medical informatics, i.e. computer-based analysis or dissemination of patient or disease data
    • G06F19/34Computer-assisted medical diagnosis or treatment, e.g. computerised prescription or delivery of medication or diets, computerised local control of medical devices, medical expert systems or telemedicine
    • G06F19/345Medical expert systems, neural networks or other automated diagnosis
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06KRECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K9/00Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
    • G06K9/62Methods or arrangements for recognition using electronic means
    • G06K9/6267Classification techniques
    • G06K9/6279Classification techniques relating to the number of classes
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06KRECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K9/00Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
    • G06K9/62Methods or arrangements for recognition using electronic means
    • G06K9/6217Design or setup of recognition systems and techniques; Extraction of features in feature space; Clustering techniques; Blind source separation
    • G06K9/6232Extracting features by transforming the feature space, e.g. multidimensional scaling; Mappings, e.g. subspace methods
    • G06K9/6247Extracting features by transforming the feature space, e.g. multidimensional scaling; Mappings, e.g. subspace methods based on an approximation criterion, e.g. principal component analysis
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS OR SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING; SPEECH OR AUDIO CODING OR DECODING
    • G10L15/00Speech recognition
    • G10L15/06Creation of reference templates; Training of speech recognition systems, e.g. adaptation to the characteristics of the speaker's voice
    • G10L15/065Adaptation
    • G10L15/07Adaptation to the speaker
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS OR SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING; SPEECH OR AUDIO CODING OR DECODING
    • G10L15/00Speech recognition
    • G10L15/08Speech classification or search
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F19/00Digital computing or data processing equipment or methods, specially adapted for specific applications
    • G06F19/10Bioinformatics, i.e. methods or systems for genetic or protein-related data processing in computational molecular biology
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06KRECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K9/00Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
    • G06K9/62Methods or arrangements for recognition using electronic means
    • G06K9/68Methods or arrangements for recognition using electronic means using sequential comparisons of the image signals with a plurality of references in which the sequence of the image signals or the references is relevant, e.g. addressable memory
    • G06K9/6807Dividing the references in groups prior to recognition, the recognition taking place in steps; Selecting relevant dictionaries
    • G06K9/6842Dividing the references in groups prior to recognition, the recognition taking place in steps; Selecting relevant dictionaries according to the linguistic properties, e.g. English, German
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06NCOMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computer systems based on biological models
    • G06N3/02Computer systems based on biological models using neural network models
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06NCOMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N99/00Subject matter not provided for in other groups of this subclass
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F15/00Digital computers in general; Data processing equipment in general
    • G06F15/18Digital computers in general; Data processing equipment in general in which a programme is changed according to experience gained by the computer itself during a complete run; Learning machines

Similar Documents

Publication Publication Date Title
Karan et al. Parkinson disease prediction using intrinsic mode function based features from speech signal
Lamba et al. A hybrid system for Parkinson’s disease diagnosis using machine learning techniques
Sakar et al. A comparative analysis of speech signal processing algorithms for Parkinson’s disease classification and the use of the tunable Q-factor wavelet transform
Solana-Lavalle et al. Automatic Parkinson disease detection at early stages as a pre-diagnosis tool by using classifiers and a small set of vocal features
Karan et al. Non-negative matrix factorization-based time-frequency feature extraction of voice signal for Parkinson's disease prediction
Karan et al. An improved framework for Parkinson’s disease prediction using Variational Mode Decomposition-Hilbert spectrum of speech signal
Sáenz-Lechón et al. Automatic assessment of voice quality according to the GRBAS scale
Jothilakshmi Automatic system to detect the type of voice pathology
Vavrek et al. Deep convolutional neural network for detection of pathological speech
Vital et al. Probabilistic neural network-based model for identification of Parkinson’s disease by using voice profile and personal data
Xie et al. A voice disease detection method based on MFCCs and shallow CNN
Celik et al. Proposing a new approach based on convolutional neural networks and random forest for the diagnosis of Parkinson's disease from speech signals
Karan et al. An investigation about the relationship between dysarthria level of speech and the neurological state of Parkinson’s patients
Nouhaila et al. An intelligent approach based on the combination of the discrete wavelet transform, delta delta MFCC for Parkinson's disease diagnosis
Sharanyaa et al. An exploration on feature extraction and classification techniques for dysphonic speech disorder in Parkinson’s Disease
Singh Feature extraction and classification efficiency analysis using machine learning approach for speech signal
Karan Speech-Based Parkinson’s Disease Prediction Using XGBoost-Based Features Selection and the Stacked Ensemble of Classifiers
Kumar et al. Parkinson’s Speech Detection Using YAMNet
Nayak et al. Identification of Parkinson’s disease from speech signal using machine learning approach
Gidaye et al. Application of glottal flow descriptors for pathological voice diagnosis
Chaurasia et al. Detection of Parkinson's disease by using machine learning stacking and ensemble method
Yildirim et al. A new hybrid approach based on AOA, CNN and feature fusion that can automatically diagnose Parkinson's disease from sound signals: PDD-AOA-CNN
Akshay et al. Identification of Parkinson disease patients classification using feed forward technique based on speech signals
Gidaye et al. Unified wavelet-based framework for evaluation of voice impairment
Salih et al. Parkinson’s disease detection by processing different ANN architecture using vocal dataset