[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

Mostafa et al., 2009 - Google Patents

Recognition of western style musical genres using machine learning techniques

Mostafa et al., 2009

Document ID
7393629152913069413
Author
Mostafa M
Billor N
Publication year
Publication venue
Expert Systems with Applications

External Links

Snippet

This study uses machine learning techniques (ML) to classify and cluster different Western music genres. Three artificial neural network models (multi-layer perceptron neural network [MLP], probabilistic neural network [PNN]) and self-organizing maps neural network (SOM) …
Continue reading at www.sciencedirect.com (other versions)

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06KRECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K9/00Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
    • G06K9/62Methods or arrangements for recognition using electronic means
    • G06K9/6267Classification techniques
    • G06K9/6268Classification techniques relating to the classification paradigm, e.g. parametric or non-parametric approaches
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06NCOMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N99/00Subject matter not provided for in other groups of this subclass
    • G06N99/005Learning machines, i.e. computer in which a programme is changed according to experience gained by the machine itself during a complete run
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06KRECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K9/00Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
    • G06K9/62Methods or arrangements for recognition using electronic means
    • G06K9/6267Classification techniques
    • G06K9/6279Classification techniques relating to the number of classes
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06KRECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K9/00Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
    • G06K9/62Methods or arrangements for recognition using electronic means
    • G06K9/6217Design or setup of recognition systems and techniques; Extraction of features in feature space; Clustering techniques; Blind source separation
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/30Information retrieval; Database structures therefor; File system structures therefor
    • G06F17/30286Information retrieval; Database structures therefor; File system structures therefor in structured data stores
    • G06F17/30587Details of specialised database models
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/30Information retrieval; Database structures therefor; File system structures therefor
    • G06F17/3061Information retrieval; Database structures therefor; File system structures therefor of unstructured textual data
    • G06F17/30705Clustering or classification
    • G06F17/3071Clustering or classification including class or cluster creation or modification
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06NCOMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computer systems based on biological models
    • G06N3/02Computer systems based on biological models using neural network models
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06QDATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTING PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTING PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q30/00Commerce, e.g. shopping or e-commerce
    • G06Q30/02Marketing, e.g. market research and analysis, surveying, promotions, advertising, buyer profiling, customer management or rewards; Price estimation or determination
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06NCOMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N5/00Computer systems utilising knowledge based models
    • G06N5/02Knowledge representation
    • G06N5/022Knowledge engineering, knowledge acquisition
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06QDATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTING PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTING PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q40/00Finance; Insurance; Tax strategies; Processing of corporate or income taxes
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F15/00Digital computers in general; Data processing equipment in general
    • G06F15/18Digital computers in general; Data processing equipment in general in which a programme is changed according to experience gained by the computer itself during a complete run; Learning machines

Similar Documents

Publication Publication Date Title
Chen et al. Selecting critical features for data classification based on machine learning methods
Sarker Machine learning: Algorithms, real-world applications and research directions
Xie et al. Customer churn prediction using improved balanced random forests
Kim et al. One deep music representation to rule them all? A comparative analysis of different representation learning strategies
Bahnsen et al. A novel cost-sensitive framework for customer churn predictive modeling
Pal et al. Pattern recognition algorithms for data mining
EP1504412B1 (en) Processing mixed numeric and/or non-numeric data
Fauvel et al. XEM: An explainable-by-design ensemble method for multivariate time series classification
Hooman et al. Statistical and data mining methods in credit scoring
Mostafa et al. Recognition of western style musical genres using machine learning techniques
Panteli et al. A computational study on outliers in world music
Cai et al. Music genre classification based on auditory image, spectral and acoustic features
Pampalk et al. A new approach to hierarchical clustering and structuring of data with self-organizing maps
Melo et al. Graph-based feature extraction: A new proposal to study the classification of music signals outside the time-frequency domain
Chen et al. An extended study of the K-means algorithm for data clustering and its applications
Kumaraswamy Optimized deep learning for genre classification via improved moth flame algorithm
Zhang et al. Feature relevance term variation for multi-label feature selection
Sarmah et al. Learning embedded representation of the stock correlation matrix using graph machine learning
Zou et al. An improved fast shapelet selection algorithm and its application to pervasive EEG
Jalajakshi et al. Importance of statistics to data science
Taheri et al. Collaboration graph for feature set partitioning in data classification
Park Classification of audio signals using Fuzzy c-Means with divergence-based Kernel
Chauhan et al. Applicability of classifier to discovery knowledge for future prediction modelling
Mawane et al. Unsupervised deep collaborative filtering recommender system for e-learning platforms
Xu et al. Research on context-aware group recommendation based on deep learning