Wang et al., 2017 - Google Patents
Development of immunoaffinity solid phase microextraction rods for analysis of three estrogens in environmental water samplesWang et al., 2017
- Document ID
- 7367975216117002598
- Author
- Wang C
- Yang L
- Li N
- Zhang X
- Guo Y
- Li C
- Publication year
- Publication venue
- Journal of Chromatography B
External Links
Snippet
In this study, immunoaffinity solid phase microextraction (SPME) rods were developed for the analysis of diethylstilbestrol (DES), hexestrol (HES) and dienestrol (DIS) followed by ultra high-performance liquid chromatography-tandem mass spectrometry (UPLC–MS/MS) …
- 238000002470 solid-phase micro-extraction 0 title abstract description 71
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by the preceding groups
- G01N33/48—Investigating or analysing materials by specific methods not covered by the preceding groups biological material, e.g. blood, urine; Haemocytometers
- G01N33/50—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
- G01N33/53—Immunoassay; Biospecific binding assay
- G01N33/543—Immunoassay; Biospecific binding assay with an insoluble carrier for immobilising immunochemicals
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N1/00—Sampling; Preparing specimens for investigation
- G01N1/28—Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
- G01N1/40—Concentrating samples
- G01N1/405—Concentrating samples by adsorption or absorption
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N30/00—Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
- G01N30/02—Column chromatography
- G01N30/04—Preparation or injection of sample to be analysed
- G01N30/06—Preparation
- G01N30/08—Preparation using an enricher
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N30/00—Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
- G01N30/90—Plate chromatography, e.g. thin layer or paper chromatography
- G01N30/94—Development
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS, COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/30—Processes for preparing, regenerating, or reactivating
- B01J20/32—Impregnating or coating; Solid sorbent compositions obtained from processes involving impregnating or coating
- B01J20/3231—Impregnating or coating; Solid sorbent compositions obtained from processes involving impregnating or coating characterised by the coating or impregnating layer
- B01J20/3242—Layers with a functional group, e.g. an affinity material, a ligand, a reactant or a complexing group
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N27/00—Investigating or analysing materials by the use of electric, electro-chemical, or magnetic means
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS, COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/28—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
- B01J20/28054—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS, COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/28—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
- B01J20/28002—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their physical properties
- B01J20/28004—Sorbent size or size distribution, e.g. particle size
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Wang et al. | Development of immunoaffinity solid phase microextraction rods for analysis of three estrogens in environmental water samples | |
Roldán-Pijuán et al. | Stir fabric phase sorptive extraction for the determination of triazine herbicides in environmental waters by liquid chromatography | |
Mirzajani et al. | Preparation and characterization of magnetic metal–organic framework nanocomposite as solid-phase microextraction fibers coupled with high-performance liquid chromatography for determination of non-steroidal anti-inflammatory drugs in biological fluids and tablet formulation samples | |
Racamonde et al. | Fabric phase sorptive extraction: A new sorptive microextraction technique for the determination of non-steroidal anti-inflammatory drugs from environmental water samples | |
Barbosa et al. | Restricted access carbon nanotubes for direct extraction of cadmium from human serum samples followed by atomic absorption spectrometry analysis | |
Kaur et al. | Application of fabric phase sorptive extraction with gas chromatography and mass spectrometry for the determination of organophosphorus pesticides in selected vegetable samples | |
Wu et al. | Single-walled carbon nanotubes coated fibers for solid-phase microextraction and gas chromatography–mass spectrometric determination of pesticides in Tea samples | |
Ma et al. | Determination of endocrine-disrupting compounds in water by carbon nanotubes solid-phase microextraction fiber coupled online with high performance liquid chromatography | |
Wang et al. | Silk fiber for in-tube solid-phase microextraction to detect aldehydes by chemical derivatization | |
Lu et al. | Preparation of hydrophilic molecularly imprinted solid‐phase microextraction fiber for the selective removal and extraction of trace tetracyclines residues in animal derived foods | |
Ji et al. | Diamond nanoparticles coating for in‐tube solid‐phase microextraction to detect polycyclic aromatic hydrocarbons | |
Feng et al. | Triazine-based covalent porous organic polymer for the online in-tube solid-phase microextraction of polycyclic aromatic hydrocarbons prior to high-performance liquid chromatography-diode array detection | |
Zhang et al. | Electrospun nanofibers-based online micro-solid phase extraction for the determination of monohydroxy polycyclic aromatic hydrocarbons in human urine | |
Mei et al. | Development of an immunoaffinity chromatography column for selective extraction of a new agonist phenylethylamine A from feed, meat and liver samples | |
Gholivand et al. | Highly porous silica‐polyaniline nanocomposite as a novel solid‐phase microextraction fiber coating | |
Serra-Mora et al. | Trends in online intube solid phase microextraction | |
Panavaitė et al. | Silicone glue coated stainless steel wire for solid phase microextraction | |
Bian et al. | Progress in the pretreatment and analysis of N-nitrosamines: an update since 2010 | |
Shi et al. | Tris (pentafluoroethyl) trifluorophosphate-basd ionic liquids as advantageous solid-phase micro-extraction coatings for the extraction of organophosphate esters in environmental waters | |
Wang et al. | Inorganic–organic hybrid coating material for the online in‐tube solid‐phase microextraction of monohydroxy polycyclic aromatic hydrocarbons in urine | |
Wasik et al. | New trends in sample preparation techniques for the analysis of the residues of pharmaceuticals in environmental samples | |
Zheng et al. | Novel bimodal porous N-(2-aminoethyl)-3-aminopropyltrimethoxysilane-silica monolithic capillary microextraction and its application to the fractionation of aluminum in rainwater and fruit juice by electrothermal vaporization inductively coupled plasma mass spectrometry | |
Fang et al. | Preparation of a thiols β‐cyclodextrin/gold nanoparticles‐coated open tubular column for capillary electrochromatography enantioseparations | |
Sun et al. | Determination of trace triclosan in environmental water by microporous bamboo‐activated charcoal solid‐phase extraction combined with HPLC‐ESI‐MS | |
Guedes‐Alonso et al. | Molecularly imprinted solid‐phase extraction coupled with ultra high performance liquid chromatography and fluorescence detection for the determination of estrogens and their metabolites in wastewater |