Neier et al., 2012 - Google Patents
Identification of jointsaffected by water ingress in complex hybrid MV cable networks: 2 Field examples of combined VLF withstand testing, with Tan Delta (TD) and …Neier et al., 2012
- Document ID
- 7116197215065220437
- Author
- Neier T
- Gerstner A
- Jenny M
- Publication year
- Publication venue
- 2012 IEEE International Conference on Condition Monitoring and Diagnosis
External Links
Snippet
Hybrid MV cable networks can be a very complex compound of PILC, XLPE, high number joints, and joints with different kind of weaknesses in different elements of one cable line. Condition based maintenance strategies in such networks require a combination of testing …
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water   O 0 title description 31
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
- G01R31/12—Testing dielectric strength or breakdown voltage; Testing or monitoring effectiveness or level of insulation, e.g. of a cable or of an apparatus, for example using partial discharge measurements; Electrostatic testing
- G01R31/1227—Testing dielectric strength or breakdown voltage; Testing or monitoring effectiveness or level of insulation, e.g. of a cable or of an apparatus, for example using partial discharge measurements; Electrostatic testing of components, parts or materials
- G01R31/1263—Testing dielectric strength or breakdown voltage; Testing or monitoring effectiveness or level of insulation, e.g. of a cable or of an apparatus, for example using partial discharge measurements; Electrostatic testing of components, parts or materials of solid or fluid materials, e.g. insulation films, bulk material; of semiconductors or LV electronic components or parts; of cable, line or wire insulation
- G01R31/1272—Testing dielectric strength or breakdown voltage; Testing or monitoring effectiveness or level of insulation, e.g. of a cable or of an apparatus, for example using partial discharge measurements; Electrostatic testing of components, parts or materials of solid or fluid materials, e.g. insulation films, bulk material; of semiconductors or LV electronic components or parts; of cable, line or wire insulation of cable, line or wire insulation, e.g. using partial discharge measurements
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
- G01R31/02—Testing of electric apparatus, lines or components, for short-circuits, discontinuities, leakage of current, or incorrect line connection
- G01R31/024—Arrangements for indicating continuity or short-circuits in electric apparatus or lines, leakage or ground faults
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
- G01R31/34—Testing dynamo-electric machines
- G01R31/343—Testing dynamo-electric machines in operation
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
- G01R31/02—Testing of electric apparatus, lines or components, for short-circuits, discontinuities, leakage of current, or incorrect line connection
- G01R31/021—Testing of cables or conductors
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
- G01R31/08—Locating faults in cables, transmission lines, or networks
- G01R31/081—Locating faults in cables, transmission lines, or networks according to type of conductors
- G01R31/083—Locating faults in cables, transmission lines, or networks according to type of conductors in cables, e.g. underground
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
- G01R31/08—Locating faults in cables, transmission lines, or networks
- G01R31/088—Aspects of digital computing
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
- G01R31/28—Testing of electronic circuits, e.g. by signal tracer
- G01R31/2832—Specific tests of electronic circuits not provided for elsewhere
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
- G01R31/34—Testing dynamo-electric machines
- G01R31/346—Testing of armature or field windings
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
- G01R31/02—Testing of electric apparatus, lines or components, for short-circuits, discontinuities, leakage of current, or incorrect line connection
- G01R31/027—Testing of transformers
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R1/00—Details of instruments or arrangements of the types included in groups G01R5/00 - G01R13/00 and G01R31/00
- G01R1/02—General constructional details
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
- G01R31/001—Measuring interference from external sources to, or emission from, the device under test, e.g. EMC, EMI, EMP or ESD testing
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
- G01R31/327—Testing of circuit interrupters, switches or circuit-breakers
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R29/00—Arrangements for measuring or indicating electric quantities not covered by groups G01R19/00 - G01R27/00
- G01R29/08—Measuring electromagnetic field characteristics
- G01R29/0807—Measuring electromagnetic field characteristics characterised by the application
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R19/00—Arrangements for measuring currents or voltages or for indicating presence or sign thereof
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N27/00—Investigating or analysing materials by the use of electric, electro-chemical, or magnetic means
- G01N27/72—Investigating or analysing materials by the use of electric, electro-chemical, or magnetic means by investigating magnetic variables
- G01N27/82—Investigating or analysing materials by the use of electric, electro-chemical, or magnetic means by investigating magnetic variables for investigating the presence of flaws
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Villaran et al. | Condition Monitoring of Cables Task 3 Report: Condition Monitoring Techniques for Electric Cables | |
Stone | The use of partial discharge measurements to assess the condition of rotating machine insulation | |
Steennis et al. | Guarding MV cables on-line: With travelling wave based temperature monitoring, fault location, PD location and PD related remaining life aspects | |
US9720043B2 (en) | Testing a fuse | |
Kessler | The importance of partial discharge testing: PD testing has proven to be a very reliable method for detecting defects in the insulation system of electrical equipment and for assessing the risk of failure | |
Fantoni | Condition monitoring of electrical cables using line resonance analysis (LIRA) | |
Kane et al. | Advantages of continuous monitoring of partial discharges in rotating equipment and switchgear | |
Wong et al. | Practical experience using VLF Tan Delta and partial discharge measurement in medium voltage cable | |
Neier et al. | Identification of jointsaffected by water ingress in complex hybrid MV cable networks: 2 Field examples of combined VLF withstand testing, with Tan Delta (TD) and Partial Discharge (PD) diagnostics | |
Fantoni et al. | Wire system aging assessment and condition monitoring using line resonance analysis (LIRA) | |
Kane et al. | Practical experiences of on-line partial discharge measurements on a variety of medium voltage electrical equipment | |
Neier et al. | Combined application of diagnostics tools for MV underground cables | |
Kwon et al. | Assessment of cable aging for nuclear power plants I&C cable via time-frequency domain reflectometry | |
Bolliger | Simultaneous Partial Discharge and Tan Delta Measurements: New Technology in Cable Diagnostics | |
Lee et al. | A condition indexing for assessment management in MV underground power cables | |
Sumereder | A comparison of partial discharge detection with 50 Hz and 0, 1 Hz at XLPE Cables | |
Tozzi et al. | Global monitoring approach in a large autotransformer through PD, DDF and DGA analysis: PD source location and maintenance action planning | |
Kim et al. | Analysis of Off-Line and On-Line Partial Discharge in High Voltage Motor Stator Windings | |
Timperley et al. | Comparison of EMI signatures to improve condition assessment of generator stator insulation | |
Cselkó et al. | Comparison of failure detection capability of available low-voltage cable diagnostic methods | |
Tichelkamp et al. | COMPARISON OF ON-SITE PARTIAL DISCHARGE MEASUREMENTS USING VLF-, DAC-AND SLOPE-VOLTAGE FORMS AND DISSIPATION FACTOR MEASUREMENTS ON SERVICE-AGED MEDIUM VOLTAGE CABLES | |
Sumereder et al. | Latest findings at transformer bushings condition evaluation by dielectric response methods | |
Rezaei et al. | The Impact of Using Low-Power Voltage Transformers (LPVT) When Performing Cable Diagnostic Testing in Medium-Voltage Distribution Networks | |
Hongyan | Investigation on PD Activities in Man-made Defective Distribution XLPE Cable Joints | |
Bawart et al. | Influence of low-power voltage transformers (LPVT) on the results of VLF diagnostic tests on medium voltage cables |