Gorovyi et al., 2017 - Google Patents
Efficient object classification and recognition in SAR imageryGorovyi et al., 2017
View PDF- Document ID
- 6938099058926657426
- Author
- Gorovyi I
- Sharapov D
- Publication year
- Publication venue
- 2017 18th International Radar Symposium (IRS)
External Links
Snippet
SAR is a very popular instrument for imaging of the ground surface. Possibility of high- resolution image formation makes it superior tool for various information extraction tasks. In the paper, a problem of automatic target recognition is comprehensively analyzed. An idea …
- 238000000605 extraction 0 abstract description 13
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06K—RECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
- G06K9/00—Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
- G06K9/62—Methods or arrangements for recognition using electronic means
- G06K9/6267—Classification techniques
- G06K9/6268—Classification techniques relating to the classification paradigm, e.g. parametric or non-parametric approaches
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06K—RECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
- G06K9/00—Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
- G06K9/62—Methods or arrangements for recognition using electronic means
- G06K9/6217—Design or setup of recognition systems and techniques; Extraction of features in feature space; Clustering techniques; Blind source separation
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06K—RECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
- G06K9/00—Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
- G06K9/36—Image preprocessing, i.e. processing the image information without deciding about the identity of the image
- G06K9/46—Extraction of features or characteristics of the image
- G06K9/4671—Extracting features based on salient regional features, e.g. Scale Invariant Feature Transform [SIFT] keypoints
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06K—RECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
- G06K9/00—Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
- G06K9/20—Image acquisition
- G06K9/32—Aligning or centering of the image pick-up or image-field
- G06K9/3233—Determination of region of interest
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06K—RECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
- G06K9/00—Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
- G06K9/62—Methods or arrangements for recognition using electronic means
- G06K9/68—Methods or arrangements for recognition using electronic means using sequential comparisons of the image signals with a plurality of references in which the sequence of the image signals or the references is relevant, e.g. addressable memory
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06K—RECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
- G06K9/00—Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
- G06K9/62—Methods or arrangements for recognition using electronic means
- G06K9/6201—Matching; Proximity measures
- G06K9/6202—Comparing pixel values or logical combinations thereof, or feature values having positional relevance, e.g. template matching
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06K—RECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
- G06K9/00—Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
- G06K9/62—Methods or arrangements for recognition using electronic means
- G06K9/6288—Fusion techniques, i.e. combining data from various sources, e.g. sensor fusion
- G06K9/629—Fusion techniques, i.e. combining data from various sources, e.g. sensor fusion of extracted features
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06K—RECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
- G06K9/00—Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
- G06K9/00624—Recognising scenes, i.e. recognition of a whole field of perception; recognising scene-specific objects
- G06K9/0063—Recognising patterns in remote scenes, e.g. aerial images, vegetation versus urban areas
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/30—Subject of image; Context of image processing
- G06T2207/30004—Biomedical image processing
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S13/00—Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
- G01S13/88—Radar or analogous systems specially adapted for specific applications
- G01S13/89—Radar or analogous systems specially adapted for specific applications for mapping or imaging
- G01S13/90—Radar or analogous systems specially adapted for specific applications for mapping or imaging using synthetic aperture techniques, e.g. correcting range migration errors
- G01S13/9035—Particular SAR processing techniques not provided for elsewhere, e.g. squint mode, doppler beam-sharpening mode, spotlight mode, bistatic SAR, inverse SAR
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/20—Special algorithmic details
- G06T2207/20112—Image segmentation details
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/10—Image acquisition modality
- G06T2207/10032—Satellite or aerial image; Remote sensing
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06K—RECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
- G06K2209/00—Indexing scheme relating to methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Guo et al. | Scattering enhanced attention pyramid network for aircraft detection in SAR images | |
Gorovyi et al. | Efficient object classification and recognition in SAR imagery | |
Qu et al. | Vehicle detection from high-resolution aerial images using spatial pyramid pooling-based deep convolutional neural networks | |
Niemeyer et al. | Conditional random fields for urban scene classification with full waveform LiDAR data | |
Reichman et al. | Some good practices for applying convolutional neural networks to buried threat detection in Ground Penetrating Radar | |
Chitradevi et al. | An overview on image processing techniques | |
Fan et al. | Seed: A segmentation-based egocentric 3D point cloud descriptor for loop closure detection | |
Wang et al. | Airport detection in remote sensing images: A method based on saliency map | |
Wu et al. | Real-time background subtraction-based video surveillance of people by integrating local texture patterns | |
Ince et al. | Evolutionary RBF classifier for polarimetric SAR images | |
Ramos et al. | Recognising and modelling landmarks to close loops in outdoor slam | |
Camilo et al. | A large comparison of feature-based approaches for buried target classification in forward-looking ground-penetrating radar | |
Nayagam et al. | A survey on real time object detection and tracking algorithms | |
Feng et al. | Target recognition of SAR images via hierarchical fusion of complementary features | |
Belloni et al. | Comparison of descriptors for SAR ATR | |
Gorovyi et al. | Comparative analysis of convolutional neural networks and support vector machines for automatic target recognition | |
Poostchi et al. | Feature selection for appearance-based vehicle tracking in geospatial video | |
Ammar et al. | A Framework for People Re-Identification in Multi-Camera Surveillance Systems. | |
Sirmacek et al. | Road detection from remotely sensed images using color features | |
Yin et al. | Human identification via unsupervised feature learning from UWB radar data | |
CN116843906A (en) | Target multi-angle intrinsic feature mining method based on Laplace feature mapping | |
Sakaguchi et al. | Keypoint-based image processing for landmine detection in GPR data | |
Karthikeyan et al. | Detection and classification of 2D and 3D hyper spectral image using enhanced Harris corner detector | |
Hung et al. | Image texture classification using texture spectrum and local binary pattern | |
Feng et al. | Amplitude and texture feature based SAR image classification with a two-stage approach |