Sherif et al., 2017 - Google Patents
Divorced Eutectoid Transformation in the Spheroidization of Bearing SteelsSherif et al., 2017
- Document ID
- 6889167768342792409
- Author
- Sherif M
- Huang H
- Publication year
- Publication venue
- 11th International Symposium on Rolling Bearing Steels: Progress in Bearing Steel Technologies and Bearing Steel Quality Assurance
External Links
Snippet
Using dilatometry, it was possible to follow the various phase transformations encountered while spheroidizing-annealing bearing steels. A steel with 0.67 wt% carbon has been considered in the present study, as an example, where the starting microstructure was tough …
- 229910000831 Steel 0 title abstract description 74
Classifications
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE BY DECARBURISATION, TEMPERING OR OTHER TREATMENTS
- C21D1/00—General methods or devices for heat treatments, e.g. annealing, hardening, quenching, tempering
- C21D1/18—Hardening; Quenching with or without subsequent tempering
- C21D1/19—Hardening; Quenching with or without subsequent tempering by interrupted quenching
- C21D1/20—Isothermal quenching, e.g. bainitic hardening
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE BY DECARBURISATION, TEMPERING OR OTHER TREATMENTS
- C21D1/00—General methods or devices for heat treatments, e.g. annealing, hardening, quenching, tempering
- C21D1/62—Quenching devices
- C21D1/667—Quenching devices for spray quenching
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE BY DECARBURISATION, TEMPERING OR OTHER TREATMENTS
- C21D9/00—Heat treatment, e.g. annealing, hardening, quenching, tempering, adapted for particular articles; Furnaces therefor
- C21D9/36—Heat treatment, e.g. annealing, hardening, quenching, tempering, adapted for particular articles; Furnaces therefor for balls; for rollers
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE BY DECARBURISATION, TEMPERING OR OTHER TREATMENTS
- C21D1/00—General methods or devices for heat treatments, e.g. annealing, hardening, quenching, tempering
- C21D1/56—General methods or devices for heat treatments, e.g. annealing, hardening, quenching, tempering characterised by the quenching agents
- C21D1/613—Gases; Liquefied or solidified normally gaseous material
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE BY DECARBURISATION, TEMPERING OR OTHER TREATMENTS
- C21D1/00—General methods or devices for heat treatments, e.g. annealing, hardening, quenching, tempering
- C21D1/34—Methods of heating
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE BY DECARBURISATION, TEMPERING OR OTHER TREATMENTS
- C21D2211/00—Microstructure comprising significant phases
- C21D2211/008—Martensite
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE BY DECARBURISATION, TEMPERING OR OTHER TREATMENTS
- C21D2211/00—Microstructure comprising significant phases
- C21D2211/003—Cementite
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE BY DECARBURISATION, TEMPERING OR OTHER TREATMENTS
- C21D1/00—General methods or devices for heat treatments, e.g. annealing, hardening, quenching, tempering
- C21D1/06—Surface hardening
- C21D1/09—Surface hardening by direct application of electrical or wave energy; by particle radiation
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE BY DECARBURISATION, TEMPERING OR OTHER TREATMENTS
- C21D2211/00—Microstructure comprising significant phases
- C21D2211/002—Bainite
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE BY DECARBURISATION, TEMPERING OR OTHER TREATMENTS
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE BY DECARBURISATION, TEMPERING OR OTHER TREATMENTS
- C21D6/00—Heat treatment of ferrous alloys
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/02—Ferrous alloys, e.g. steel alloys containing silicon
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE BY DECARBURISATION, TEMPERING OR OTHER TREATMENTS
- C21D5/00—Heat treatments of cast-iron
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE BY DECARBURISATION, TEMPERING OR OTHER TREATMENTS
- C21D7/00—Modifying the physical properties of iron or steel by deformation
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Enloe et al. | Austenite grain growth and precipitate evolution in a carburizing steel with combined niobium and molybdenum additions | |
Zou et al. | Improved strength-ductility-toughness balance of a precipitation-strengthened low-carbon medium-Mn steel by adopting intercritical annealing-tempering process | |
CN105671435A (en) | Steel for manufacturing bearing, method for carrying out heat treatment on steel and forming piece | |
SE1851553A1 (en) | Method for producing an ausferritic steel austempered during continuous cooling followed by annealing | |
KR102349238B1 (en) | Microtreatment and microstructure of carbide containing iron-based alloy | |
CN104164548B (en) | A kind of thermal treatment process of thick and large section low-carbon low-alloy steel forge piece | |
Cerah et al. | Influence of martensite volume fraction and tempering time on tensile properties of partially austenitized in the (α+ γ) temperature range and quenched+ tempered ferritic ductile iron | |
CN109880986B (en) | Post-heat treatment method for laser additive manufacturing of 12CrNi2 alloy steel | |
Kim et al. | Effect of silicon on the spheroidization of cementite in hypereutectoid high carbon chromium bearing steels | |
Yamamoto et al. | Modification of grain boundary microstructure by controlling dissolution behavior of θ particles in Cr-containing hypereutectoid steel | |
CN109536686A (en) | The preparation method of manganese TRIP steel in a kind of Nb-microalloying | |
Sherif et al. | Divorced Eutectoid Transformation in the Spheroidization of Bearing Steels | |
WO2013060878A1 (en) | A bearing component | |
Singh et al. | Precipitation behaviour of microalloyed steel during hot deformation | |
Berns et al. | Nitrogen and Ausforming to Improve Stainless Martensitic Steels | |
Dewi et al. | Short thermal cycle treatment with laser of vanadium microalloyed steels | |
CN109517947A (en) | A kind of preparation method containing manganese TRIP steel in aluminium | |
Zhuang et al. | Continuous cooling transformation behaviour of C-Si-Mn TRIP steel | |
Dossett | Introduction to cast iron heat treatment | |
Stojko et al. | Isothermal martensite formation at sub-zero temperatures | |
Lee et al. | Development of a press-hardened steel suitable for thin slab direct rolling processing | |
Rothleutner et al. | Influence of vanadium microalloying on the microstructure of induction hardened 1045 steel shafts | |
Wang et al. | Heat Treating of Carbon Steels | |
Bevis | Different roles for vanadium as a microalloying element in structural steels | |
Speer et al. | Austenitizing in steels |