Nikolov et al., 2005 - Google Patents
Modeling and FPGA implementation of applications using parameterized process networks with non-static parametersNikolov et al., 2005
- Document ID
- 6811635539823040059
- Author
- Nikolov H
- Stefanov T
- Deprettere E
- Publication year
- Publication venue
- 13th Annual IEEE Symposium on Field-Programmable Custom Computing Machines (FCCM'05)
External Links
Snippet
Today's applications in the domains of multimedia, signal processing, etc. consist of a number of interacting components. If the way of interaction is determined at run time, we say that an application is non-static. In general, complex real-world applications are non-static …
- 238000000034 method 0 title abstract description 71
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F9/00—Arrangements for programme control, e.g. control unit
- G06F9/06—Arrangements for programme control, e.g. control unit using stored programme, i.e. using internal store of processing equipment to receive and retain programme
- G06F9/30—Arrangements for executing machine-instructions, e.g. instruction decode
- G06F9/38—Concurrent instruction execution, e.g. pipeline, look ahead
- G06F9/3885—Concurrent instruction execution, e.g. pipeline, look ahead using a plurality of independent parallel functional units
- G06F9/3893—Concurrent instruction execution, e.g. pipeline, look ahead using a plurality of independent parallel functional units controlled in tandem, e.g. multiplier-accumulator
- G06F9/3895—Concurrent instruction execution, e.g. pipeline, look ahead using a plurality of independent parallel functional units controlled in tandem, e.g. multiplier-accumulator for complex operations, e.g. multidimensional or interleaved address generators, macros
- G06F9/3897—Concurrent instruction execution, e.g. pipeline, look ahead using a plurality of independent parallel functional units controlled in tandem, e.g. multiplier-accumulator for complex operations, e.g. multidimensional or interleaved address generators, macros with adaptable data path
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F9/00—Arrangements for programme control, e.g. control unit
- G06F9/06—Arrangements for programme control, e.g. control unit using stored programme, i.e. using internal store of processing equipment to receive and retain programme
- G06F9/30—Arrangements for executing machine-instructions, e.g. instruction decode
- G06F9/30003—Arrangements for executing specific machine instructions
- G06F9/30007—Arrangements for executing specific machine instructions to perform operations on data operands
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F9/00—Arrangements for programme control, e.g. control unit
- G06F9/06—Arrangements for programme control, e.g. control unit using stored programme, i.e. using internal store of processing equipment to receive and retain programme
- G06F9/30—Arrangements for executing machine-instructions, e.g. instruction decode
- G06F9/38—Concurrent instruction execution, e.g. pipeline, look ahead
- G06F9/3867—Concurrent instruction execution, e.g. pipeline, look ahead using instruction pipelines
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F17/00—Digital computing or data processing equipment or methods, specially adapted for specific functions
- G06F17/50—Computer-aided design
- G06F17/5009—Computer-aided design using simulation
- G06F17/5022—Logic simulation, e.g. for logic circuit operation
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F9/00—Arrangements for programme control, e.g. control unit
- G06F9/06—Arrangements for programme control, e.g. control unit using stored programme, i.e. using internal store of processing equipment to receive and retain programme
- G06F9/30—Arrangements for executing machine-instructions, e.g. instruction decode
- G06F9/38—Concurrent instruction execution, e.g. pipeline, look ahead
- G06F9/3877—Concurrent instruction execution, e.g. pipeline, look ahead using a slave processor, e.g. coprocessor
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F8/00—Arrangements for software engineering
- G06F8/40—Transformations of program code
- G06F8/41—Compilation
- G06F8/45—Exploiting coarse grain parallelism in compilation, i.e. parallelism between groups of instructions
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F8/00—Arrangements for software engineering
- G06F8/40—Transformations of program code
- G06F8/41—Compilation
- G06F8/44—Encoding
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F17/00—Digital computing or data processing equipment or methods, specially adapted for specific functions
- G06F17/50—Computer-aided design
- G06F17/5045—Circuit design
- G06F17/505—Logic synthesis, e.g. technology mapping, optimisation
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F17/00—Digital computing or data processing equipment or methods, specially adapted for specific functions
- G06F17/50—Computer-aided design
- G06F17/5009—Computer-aided design using simulation
- G06F17/504—Formal methods
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F17/00—Digital computing or data processing equipment or methods, specially adapted for specific functions
- G06F17/50—Computer-aided design
- G06F17/5045—Circuit design
- G06F17/5054—Circuit design for user-programmable logic devices, e.g. field programmable gate arrays [FPGA]
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F9/00—Arrangements for programme control, e.g. control unit
- G06F9/06—Arrangements for programme control, e.g. control unit using stored programme, i.e. using internal store of processing equipment to receive and retain programme
- G06F9/46—Multiprogramming arrangements
- G06F9/54—Interprogramme communication; Intertask communication
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F15/00—Digital computers in general; Data processing equipment in general
- G06F15/76—Architectures of general purpose stored programme computers
- G06F15/78—Architectures of general purpose stored programme computers comprising a single central processing unit
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F17/00—Digital computing or data processing equipment or methods, specially adapted for specific functions
- G06F17/10—Complex mathematical operations
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F2217/00—Indexing scheme relating to computer aided design [CAD]
- G06F2217/86—Hardware-Software co-design
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F2217/00—Indexing scheme relating to computer aided design [CAD]
- G06F2217/68—Processors
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F7/00—Methods or arrangements for processing data by operating upon the order or content of the data handled
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Cong et al. | High-level synthesis for FPGAs: From prototyping to deployment | |
Cardoso et al. | Compilation techniques for reconfigurable architectures | |
Najjar et al. | High-level language abstraction for reconfigurable computing | |
Guo et al. | A compiler intermediate representation for reconfigurable fabrics | |
US20070219771A1 (en) | Branching and Behavioral Partitioning for a VLIW Processor | |
Lau et al. | Automated generation of hardware accelerators with direct memory access from ANSI/ISO standard C functions | |
Palumbo et al. | The multi-dataflow composer tool: generation of on-the-fly reconfigurable platforms | |
Banerjee et al. | MATCH: A MATLAB compiler for configurable computing systems | |
Nikolov et al. | Modeling and FPGA implementation of applications using parameterized process networks with non-static parameters | |
Paek et al. | Binary acceleration using coarse-grained reconfigurable architecture | |
Huang et al. | Windowed FIFOs for FPGA-based multiprocessor systems | |
Tibboel et al. | System-level design flow based on a functional reference for hw and sw | |
Sahlbach et al. | A system-level FPGA design methodology for video applications with weakly-programmable hardware components | |
Keinert et al. | Design of image processing embedded systems using multidimensional data flow | |
US20210294948A1 (en) | High-level synthesis (hls) method and apparatus to specify parallelism in computer hardware | |
Nikolov et al. | Automated integration of dedicated hardwired IP cores in heterogeneous MPSoCs designed with ESPAM | |
Schmid et al. | High-level synthesis revised-Generation of FPGA accelerators from a domain-specific language using the polyhedron model | |
Choi et al. | A unified software approach to specify pipeline and spatial parallelism in FPGA hardware | |
Nadezhkin et al. | Translating affine nested-loop programs with dynamic loop bounds into polyhedral process networks | |
Cong et al. | Behavior and communication co-optimization for systems with sequential communication media | |
Bergeron et al. | High level synthesis for data-driven applications | |
Self et al. | Design methodology for construction of asynchronous pipelines with Handel-C | |
Fryer et al. | The Good, the Bad and the Ugly: Practices and Perspectives on Hardware Acceleration for Embedded Image Processing | |
Mamaghani et al. | Optimised synthesis of asynchronous elastic dataflows by leveraging clocked eda | |
Bailey et al. | Codesign experiences based on a virtual platform |