Liu et al., 2018 - Google Patents
MASH 1-1-1 CT ΔΣ M with FIR DAC and Loop-Unrolling QuantizerLiu et al., 2018
- Document ID
- 67704998108274670
- Author
- Liu Q
- Edward A
- Briseno-Vidrios C
- Silva-Martinez J
- Liu Q
- Edward A
- Briseno-Vidrios C
- Silva-Martinez J
- Publication year
- Publication venue
- Design Techniques for Mash Continuous-Time Delta-Sigma Modulators
External Links
Snippet
This chapter discusses the design of a MASH 1-1-1 CT ΔΣ M employing finite impulse response (FIR) digital-to-analog converters (DACs) and encoder-embedded loop-unrolling (EELU) quantizers. The presented MASH 1-1-1 topology is a cascade of three single-loop …
- 235000006085 Vigna mungo var mungo 0 title abstract description 40
Classifications
-
- H—ELECTRICITY
- H03—BASIC ELECTRONIC CIRCUITRY
- H03M—CODING; DECODING; CODE CONVERSION IN GENERAL
- H03M3/00—Conversion of analogue values to or from differential modulation
- H03M3/30—Delta-sigma modulation
- H03M3/39—Structural details of delta-sigma modulators, e.g. incremental delta-sigma modulators
- H03M3/412—Structural details of delta-sigma modulators, e.g. incremental delta-sigma modulators characterised by the number of quantisers and their type and resolution
- H03M3/422—Structural details of delta-sigma modulators, e.g. incremental delta-sigma modulators characterised by the number of quantisers and their type and resolution having one quantiser only
-
- H—ELECTRICITY
- H03—BASIC ELECTRONIC CIRCUITRY
- H03M—CODING; DECODING; CODE CONVERSION IN GENERAL
- H03M3/00—Conversion of analogue values to or from differential modulation
- H03M3/30—Delta-sigma modulation
- H03M3/39—Structural details of delta-sigma modulators, e.g. incremental delta-sigma modulators
- H03M3/436—Structural details of delta-sigma modulators, e.g. incremental delta-sigma modulators characterised by the order of the loop filter, e.g. error feedback type
- H03M3/438—Structural details of delta-sigma modulators, e.g. incremental delta-sigma modulators characterised by the order of the loop filter, e.g. error feedback type the modulator having a higher order loop filter in the feedforward path
- H03M3/454—Structural details of delta-sigma modulators, e.g. incremental delta-sigma modulators characterised by the order of the loop filter, e.g. error feedback type the modulator having a higher order loop filter in the feedforward path with distributed feedback, i.e. with feedback paths from the quantiser output to more than one filter stage
-
- H—ELECTRICITY
- H03—BASIC ELECTRONIC CIRCUITRY
- H03M—CODING; DECODING; CODE CONVERSION IN GENERAL
- H03M1/00—Analogue/digital conversion; Digital/analogue conversion
- H03M1/06—Continuously compensating for, or preventing, undesired influence of physical parameters
- H03M1/0617—Continuously compensating for, or preventing, undesired influence of physical parameters characterised by the use of methods or means not specific to a particular type of detrimental influence
- H03M1/0626—Continuously compensating for, or preventing, undesired influence of physical parameters characterised by the use of methods or means not specific to a particular type of detrimental influence by filtering
-
- H—ELECTRICITY
- H03—BASIC ELECTRONIC CIRCUITRY
- H03M—CODING; DECODING; CODE CONVERSION IN GENERAL
- H03M1/00—Analogue/digital conversion; Digital/analogue conversion
- H03M1/06—Continuously compensating for, or preventing, undesired influence of physical parameters
- H03M1/0617—Continuously compensating for, or preventing, undesired influence of physical parameters characterised by the use of methods or means not specific to a particular type of detrimental influence
- H03M1/0634—Continuously compensating for, or preventing, undesired influence of physical parameters characterised by the use of methods or means not specific to a particular type of detrimental influence by averaging out the errors, e.g. using sliding scale
- H03M1/0656—Continuously compensating for, or preventing, undesired influence of physical parameters characterised by the use of methods or means not specific to a particular type of detrimental influence by averaging out the errors, e.g. using sliding scale in the time domain
- H03M1/066—Continuously compensating for, or preventing, undesired influence of physical parameters characterised by the use of methods or means not specific to a particular type of detrimental influence by averaging out the errors, e.g. using sliding scale in the time domain by continuously permuting the elements used, i.e. dynamic element matching
-
- H—ELECTRICITY
- H03—BASIC ELECTRONIC CIRCUITRY
- H03M—CODING; DECODING; CODE CONVERSION IN GENERAL
- H03M3/00—Conversion of analogue values to or from differential modulation
- H03M3/30—Delta-sigma modulation
- H03M3/39—Structural details of delta-sigma modulators, e.g. incremental delta-sigma modulators
- H03M3/436—Structural details of delta-sigma modulators, e.g. incremental delta-sigma modulators characterised by the order of the loop filter, e.g. error feedback type
- H03M3/438—Structural details of delta-sigma modulators, e.g. incremental delta-sigma modulators characterised by the order of the loop filter, e.g. error feedback type the modulator having a higher order loop filter in the feedforward path
- H03M3/44—Structural details of delta-sigma modulators, e.g. incremental delta-sigma modulators characterised by the order of the loop filter, e.g. error feedback type the modulator having a higher order loop filter in the feedforward path with provisions for rendering the modulator inherently stable
- H03M3/446—Structural details of delta-sigma modulators, e.g. incremental delta-sigma modulators characterised by the order of the loop filter, e.g. error feedback type the modulator having a higher order loop filter in the feedforward path with provisions for rendering the modulator inherently stable by a particular choice of poles or zeroes in the z-plane, e.g. by positioning zeroes outside the unit circle, i.e. causing the modulator to operate in a chaotic regime
- H03M3/448—Structural details of delta-sigma modulators, e.g. incremental delta-sigma modulators characterised by the order of the loop filter, e.g. error feedback type the modulator having a higher order loop filter in the feedforward path with provisions for rendering the modulator inherently stable by a particular choice of poles or zeroes in the z-plane, e.g. by positioning zeroes outside the unit circle, i.e. causing the modulator to operate in a chaotic regime by removing part of the zeroes, e.g. using local feedback loops
-
- H—ELECTRICITY
- H03—BASIC ELECTRONIC CIRCUITRY
- H03M—CODING; DECODING; CODE CONVERSION IN GENERAL
- H03M1/00—Analogue/digital conversion; Digital/analogue conversion
- H03M1/06—Continuously compensating for, or preventing, undesired influence of physical parameters
- H03M1/0617—Continuously compensating for, or preventing, undesired influence of physical parameters characterised by the use of methods or means not specific to a particular type of detrimental influence
- H03M1/0675—Continuously compensating for, or preventing, undesired influence of physical parameters characterised by the use of methods or means not specific to a particular type of detrimental influence using redundancy
-
- H—ELECTRICITY
- H03—BASIC ELECTRONIC CIRCUITRY
- H03M—CODING; DECODING; CODE CONVERSION IN GENERAL
- H03M1/00—Analogue/digital conversion; Digital/analogue conversion
- H03M1/06—Continuously compensating for, or preventing, undesired influence of physical parameters
- H03M1/0614—Continuously compensating for, or preventing, undesired influence of physical parameters of harmonic distortion
-
- H—ELECTRICITY
- H03—BASIC ELECTRONIC CIRCUITRY
- H03M—CODING; DECODING; CODE CONVERSION IN GENERAL
- H03M3/00—Conversion of analogue values to or from differential modulation
- H03M3/30—Delta-sigma modulation
- H03M3/322—Continuously compensating for, or preventing, undesired influence of physical parameters
- H03M3/352—Continuously compensating for, or preventing, undesired influence of physical parameters of deviations from the desired transfer characteristic
- H03M3/354—Continuously compensating for, or preventing, undesired influence of physical parameters of deviations from the desired transfer characteristic at one point, i.e. by adjusting a single reference value, e.g. bias or gain error
- H03M3/356—Offset or drift compensation
-
- H—ELECTRICITY
- H03—BASIC ELECTRONIC CIRCUITRY
- H03M—CODING; DECODING; CODE CONVERSION IN GENERAL
- H03M1/00—Analogue/digital conversion; Digital/analogue conversion
- H03M1/66—Digital/analogue converters
-
- H—ELECTRICITY
- H03—BASIC ELECTRONIC CIRCUITRY
- H03M—CODING; DECODING; CODE CONVERSION IN GENERAL
- H03M3/00—Conversion of analogue values to or from differential modulation
- H03M3/30—Delta-sigma modulation
- H03M3/50—Digital/analogue converters using delta-sigma modulation as an intermediate step
-
- H—ELECTRICITY
- H03—BASIC ELECTRONIC CIRCUITRY
- H03M—CODING; DECODING; CODE CONVERSION IN GENERAL
- H03M1/00—Analogue/digital conversion; Digital/analogue conversion
- H03M1/12—Analogue/digital converters
- H03M1/34—Analogue value compared with reference values
- H03M1/36—Analogue value compared with reference values simultaneously only, i.e. parallel type
-
- H—ELECTRICITY
- H03—BASIC ELECTRONIC CIRCUITRY
- H03F—AMPLIFIERS
- H03F3/00—Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
- H03F3/45—Differential amplifiers
- H03F3/45071—Differential amplifiers with semiconductor devices only
- H03F3/45076—Differential amplifiers with semiconductor devices only characterised by the way of implementation of the active amplifying circuit in the differential amplifier
-
- H—ELECTRICITY
- H03—BASIC ELECTRONIC CIRCUITRY
- H03M—CODING; DECODING; CODE CONVERSION IN GENERAL
- H03M1/00—Analogue/digital conversion; Digital/analogue conversion
- H03M1/10—Calibration or testing
- H03M1/1009—Calibration
-
- H—ELECTRICITY
- H03—BASIC ELECTRONIC CIRCUITRY
- H03F—AMPLIFIERS
- H03F3/00—Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
- H03F3/20—Power amplifiers, e.g. Class B amplifiers, Class C amplifiers
-
- H—ELECTRICITY
- H03—BASIC ELECTRONIC CIRCUITRY
- H03F—AMPLIFIERS
- H03F1/00—Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
-
- H—ELECTRICITY
- H03—BASIC ELECTRONIC CIRCUITRY
- H03H—IMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
- H03H17/00—Networks using digital techniques
- H03H17/02—Frequency selective networks
- H03H17/0283—Filters characterised by the filter structure
- H03H17/0286—Combinations of filter structures
- H03H17/0289—Digital and active filter structures
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Liu et al. | A 0.029-mm 2 17-fJ/Conversion-Step Third-Order CT $\Delta\Sigma $ ADC With a Single OTA and Second-Order Noise-Shaping SAR Quantizer | |
Fujimori et al. | A multibit delta-sigma audio DAC with 120-dB dynamic range | |
Dong et al. | A 72 db-dr 465 mhz-bw continuous-time 1-2 mash adc in 28 nm cmos | |
Qi et al. | A 76.6-dB-SNDR 50-MHz-BW 29.2-mW multi-bit CT sturdy MASH with DAC non-linearity tolerance | |
Vogelmann et al. | A Dynamic Power Reduction Technique for Incremental $\Delta\Sigma $ Modulators | |
Liu et al. | A continuous-time MASH 1-1-1 Delta–Sigma modulator with FIR DAC and encoder-embedded loop-unrolling quantizer in 40-nm CMOS | |
Basak et al. | A Gm-C delta-sigma modulator with a merged input-feedback Gm circuit for nonlinearity cancellation and power efficiency enhancement | |
Liu et al. | A 0-dB STF-peaking 85-MHz bw 74.4-dB SNDR CT ΔΣ ADC with unary-approximating DAC calibration in 28-nm CMOS | |
Xiao et al. | A 100-Mhz Bandwidth 80-dB Dynamic Range Continuous-Time Delta-Sigma Modulator with a 2.4-Ghz Clock Rate | |
Wang et al. | A 5.35-mW 10-MHz Single-Opamp Third-Order CT $\Delta\Sigma $ Modulator With CTC Amplifier and Adaptive Latch DAC Driver in 65-nm CMOS | |
Rajaee et al. | Design of a 79 dB 80 MHz 8X-OSR hybrid delta-sigma/pipelined ADC | |
Fukazawa et al. | A CT 2–2 MASH ΔΣ ADC with multi-rate LMS-based background calibration and input-insensitive quantization-error extraction | |
Jin et al. | A 10-MHz 85.1-dB SFDR 1.1-mW continuous-time Delta–sigma modulator employing calibration-free SC DAC and passive front-end low-pass filter | |
Liu et al. | MASH 1-1-1 CT ΔΣ M with FIR DAC and Loop-Unrolling Quantizer | |
Liu et al. | A 158-mW 360-MHz BW 68-dB DR Continuous-Time 1-1-1 Filtering MASH ADC in 40-nm CMOS | |
Hu et al. | A Two-Channel Time-Interleaved Continuous-Time Third-Order CIFF-Based Delta-Sigma Modulator | |
Śniatała et al. | A hybrid current-mode passive second-order continuous-time ΣΔ modulator | |
Bakkaloglu et al. | Design of power, dynamic range, bandwidth and noise scalable ADCs | |
Wang et al. | A 150 MHz bandwidth continuous-time ΔΣ modulator in 28 nm CMOS with DAC calibration | |
Liu et al. | MASH 4-0 CT ΔΣ M with Fully Digital Quantization Noise Reduction Algorithm | |
Morgado et al. | Design of a 130-nm cmos reconfigurable cascade σδ modulator for gsm/umts/bluetooth | |
Bolatkale | Continuous-Time ADCs for Automotive Applications | |
Reddy | Design techniques for delta sigma modulators using VCO based ADCs | |
Pelgrom | Time-Continuous Σ Δ Modulation | |
Anand et al. | Systematic Design Methodology of a Wideband Multibit Continuous‐Time Delta‐Sigma Modulator |