Krishnan et al., 2020 - Google Patents
Improving model calibration with accuracy versus uncertainty optimizationKrishnan et al., 2020
View PDF- Document ID
- 6764629857380442008
- Author
- Krishnan R
- Tickoo O
- Publication year
- Publication venue
- Advances in Neural Information Processing Systems
External Links
Snippet
Obtaining reliable and accurate quantification of uncertainty estimates from deep neural networks is important in safety-critical applications. A well-calibrated model should be accurate when it is certain about its prediction and indicate high uncertainty when it is likely …
- 238000005457 optimization 0 title abstract description 11
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06K—RECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
- G06K9/00—Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
- G06K9/62—Methods or arrangements for recognition using electronic means
- G06K9/6267—Classification techniques
- G06K9/6279—Classification techniques relating to the number of classes
- G06K9/6284—Single class perspective, e.g. one-against-all classification; Novelty detection; Outlier detection
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06K—RECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
- G06K9/00—Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
- G06K9/62—Methods or arrangements for recognition using electronic means
- G06K9/6267—Classification techniques
- G06K9/6268—Classification techniques relating to the classification paradigm, e.g. parametric or non-parametric approaches
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06K—RECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
- G06K9/00—Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
- G06K9/62—Methods or arrangements for recognition using electronic means
- G06K9/6217—Design or setup of recognition systems and techniques; Extraction of features in feature space; Clustering techniques; Blind source separation
- G06K9/6256—Obtaining sets of training patterns; Bootstrap methods, e.g. bagging, boosting
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06N—COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N99/00—Subject matter not provided for in other groups of this subclass
- G06N99/005—Learning machines, i.e. computer in which a programme is changed according to experience gained by the machine itself during a complete run
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06K—RECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
- G06K9/00—Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
- G06K9/62—Methods or arrangements for recognition using electronic means
- G06K9/6217—Design or setup of recognition systems and techniques; Extraction of features in feature space; Clustering techniques; Blind source separation
- G06K9/6261—Design or setup of recognition systems and techniques; Extraction of features in feature space; Clustering techniques; Blind source separation partitioning the feature space
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06K—RECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
- G06K9/00—Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
- G06K9/62—Methods or arrangements for recognition using electronic means
- G06K9/6217—Design or setup of recognition systems and techniques; Extraction of features in feature space; Clustering techniques; Blind source separation
- G06K9/6228—Selecting the most significant subset of features
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06K—RECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
- G06K9/00—Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
- G06K9/62—Methods or arrangements for recognition using electronic means
- G06K9/6217—Design or setup of recognition systems and techniques; Extraction of features in feature space; Clustering techniques; Blind source separation
- G06K9/6232—Extracting features by transforming the feature space, e.g. multidimensional scaling; Mappings, e.g. subspace methods
- G06K9/6247—Extracting features by transforming the feature space, e.g. multidimensional scaling; Mappings, e.g. subspace methods based on an approximation criterion, e.g. principal component analysis
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06N—COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N7/00—Computer systems based on specific mathematical models
- G06N7/005—Probabilistic networks
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06K—RECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
- G06K9/00—Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
- G06K9/62—Methods or arrangements for recognition using electronic means
- G06K9/6296—Graphical models, e.g. Bayesian networks
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06N—COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computer systems based on biological models
- G06N3/02—Computer systems based on biological models using neural network models
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06N—COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computer systems based on biological models
- G06N3/12—Computer systems based on biological models using genetic models
- G06N3/126—Genetic algorithms, i.e. information processing using digital simulations of the genetic system
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06N—COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N5/00—Computer systems utilising knowledge based models
- G06N5/04—Inference methods or devices
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06Q—DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTING PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTING PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q10/00—Administration; Management
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F17/00—Digital computing or data processing equipment or methods, specially adapted for specific functions
- G06F17/10—Complex mathematical operations
- G06F17/18—Complex mathematical operations for evaluating statistical data, e.g. average values, frequency distributions, probability functions, regression analysis
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Krishnan et al. | Improving model calibration with accuracy versus uncertainty optimization | |
Mukhoti et al. | Deep deterministic uncertainty: A new simple baseline | |
Gawlikowski et al. | A survey of uncertainty in deep neural networks | |
Wu et al. | On the quantitative analysis of decoder-based generative models | |
Geifman et al. | Bias-reduced uncertainty estimation for deep neural classifiers | |
Ruff et al. | Deep semi-supervised anomaly detection | |
Ovadia et al. | Can you trust your model's uncertainty? evaluating predictive uncertainty under dataset shift | |
Roh et al. | Sample selection for fair and robust training | |
Bi | The impact of diversity on the accuracy of evidential classifier ensembles | |
US20060115145A1 (en) | Bayesian conditional random fields | |
Brooks et al. | Nonparametric convergence assessment for MCMC model selection | |
Mucsányi et al. | Benchmarking uncertainty disentanglement: Specialized uncertainties for specialized tasks | |
Nixon et al. | Why are bootstrapped deep ensembles not better? | |
Schweighofer et al. | Quantification of uncertainty with adversarial models | |
Seligmann et al. | Beyond deep ensembles: A large-scale evaluation of bayesian deep learning under distribution shift | |
Gruber et al. | Uncertainty estimates of predictions via a general bias-variance decomposition | |
JP4490876B2 (en) | Content classification method, content classification device, content classification program, and recording medium on which content classification program is recorded | |
Uma | C5. 0 Decision Tree Model Using Tsallis Entropy and Association Function for General and Medical Dataset. | |
Rathnakumar et al. | Epistemic and aleatoric uncertainty quantification for crack detection using a Bayesian Boundary Aware Convolutional Network | |
Li et al. | Hyper evidential deep learning to quantify composite classification uncertainty | |
Gomes et al. | A data-driven measure of relative uncertainty for misclassification detection | |
Okati et al. | On the within-group fairness of screening classifiers | |
Kuntzer et al. | Detecting unresolved binary stars in Euclid VIS images | |
Koh et al. | Deep neural network uncertainty quantification for LArTPC reconstruction | |
Fuller et al. | Causal Forest and Doubly Robust Machine Learning for Political Science |