Adepu et al., 2022 - Google Patents
High-Performance Visible Light Photodetector Based on 1D SnO2 Nanofibers with a Ti3C2T x (MXene) Electron Transport LayerAdepu et al., 2022
- Document ID
- 6748547654617424136
- Author
- Adepu V
- Kunchur A
- Kolli C
- Siddhartha S
- Mattela V
- Sahatiya P
- Publication year
- Publication venue
- ACS Applied Nano Materials
External Links
Snippet
One-dimensional (1D) nanostructures have received widespread attention in optoelectronics due to their fascinating physical and chemical properties that arise from quantum effects at the nanoscale. Furthermore, there is scope to explore metal oxide-based …
- XOLBLPGZBRYERU-UHFFFAOYSA-N Tin dioxide   O=[Sn]=O 0 title abstract description 399
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GASES [GHG] EMISSION, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
- Y02E10/54—Material technologies
- Y02E10/549—Material technologies organic PV cells
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GASES [GHG] EMISSION, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
- Y02E10/54—Material technologies
- Y02E10/542—Dye sensitized solar cells
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H01L31/00—Semiconductor devices sensitive to infra-red radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus peculiar to the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/0248—Semiconductor devices sensitive to infra-red radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus peculiar to the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
- H01L31/0352—Semiconductor devices sensitive to infra-red radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus peculiar to the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
- H01L31/035209—Semiconductor devices sensitive to infra-red radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus peculiar to the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions comprising a quantum structures
- H01L31/035227—Semiconductor devices sensitive to infra-red radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus peculiar to the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions comprising a quantum structures the quantum structure being quantum wires, or nano-rods
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H01L51/00—Solid state devices using organic materials as the active part, or using a combination of organic materials with other materials as the active part; Processes or apparatus specially adapted for the manufacture or treatment of such devices, or of parts thereof
- H01L51/0032—Selection of organic semiconducting materials, e.g. organic light sensitive or organic light emitting materials
- H01L51/0045—Carbon containing materials, e.g. carbon nanotubes, fullerenes
- H01L51/0046—Fullerenes, e.g. C60, C70
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H01L51/00—Solid state devices using organic materials as the active part, or using a combination of organic materials with other materials as the active part; Processes or apparatus specially adapted for the manufacture or treatment of such devices, or of parts thereof
- H01L51/0032—Selection of organic semiconducting materials, e.g. organic light sensitive or organic light emitting materials
- H01L51/0045—Carbon containing materials, e.g. carbon nanotubes, fullerenes
- H01L51/0048—Carbon nanotubes
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H01L51/00—Solid state devices using organic materials as the active part, or using a combination of organic materials with other materials as the active part; Processes or apparatus specially adapted for the manufacture or treatment of such devices, or of parts thereof
- H01L51/05—Solid state devices using organic materials as the active part, or using a combination of organic materials with other materials as the active part; Processes or apparatus specially adapted for the manufacture or treatment of such devices, or of parts thereof specially adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential- jump barrier or surface barrier multistep processes for their manufacture
- H01L51/0504—Solid state devices using organic materials as the active part, or using a combination of organic materials with other materials as the active part; Processes or apparatus specially adapted for the manufacture or treatment of such devices, or of parts thereof specially adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential- jump barrier or surface barrier multistep processes for their manufacture the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or swiched, e.g. three-terminal devices
- H01L51/0508—Field-effect devices, e.g. TFTs
- H01L51/0512—Field-effect devices, e.g. TFTs insulated gate field effect transistors
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H01L51/00—Solid state devices using organic materials as the active part, or using a combination of organic materials with other materials as the active part; Processes or apparatus specially adapted for the manufacture or treatment of such devices, or of parts thereof
- H01L51/42—Solid state devices using organic materials as the active part, or using a combination of organic materials with other materials as the active part; Processes or apparatus specially adapted for the manufacture or treatment of such devices, or of parts thereof specially adapted for sensing infra-red radiation, light, electro-magnetic radiation of shorter wavelength or corpuscular radiation and adapted for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation using organic materials as the active part, or using a combination of organic materials with other material as the active part; Multistep processes for their manufacture
- H01L51/44—Details of devices
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H01L31/00—Semiconductor devices sensitive to infra-red radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus peculiar to the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/0248—Semiconductor devices sensitive to infra-red radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus peculiar to the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
- H01L31/0256—Semiconductor devices sensitive to infra-red radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus peculiar to the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
Similar Documents
Publication | Publication Date | Title |
---|---|---|
He et al. | α-Ga2O3 nanorod array–Cu2O microsphere p–n junctions for self-powered spectrum-distinguishable photodetectors | |
Jing et al. | Flexible ultrathin single-crystalline perovskite photodetector | |
Yan et al. | Ultrafast speed, dark current suppression, and self-powered enhancement in TiO2-based ultraviolet photodetectors by organic layers and Ag nanowires regulation | |
Zheng et al. | High-performance near-infrared photodetectors based on p-type SnX (X= S, Se) nanowires grown via chemical vapor deposition | |
Nguyen et al. | Highly enhanced photoresponsivity of a monolayer WSe2 photodetector with nitrogen-doped graphene quantum dots | |
Gao et al. | TiO2 nanorod arrays based self-powered UV photodetector: heterojunction with NiO nanoflakes and enhanced UV photoresponse | |
Sun et al. | Piezo-phototronic effect enhanced efficient flexible perovskite solar cells | |
Loh et al. | Graphene and graphene-like molecules: prospects in solar cells | |
Liu et al. | Solution-processed gas sensors employing SnO2 quantum dot/MWCNT nanocomposites | |
Sulaman et al. | Interlayer of PMMA doped with Au nanoparticles for high-performance tandem photodetectors: A solution to suppress dark current and maintain high photocurrent | |
Wu et al. | Graphene transparent conductive electrodes for highly efficient silicon nanostructures-based hybrid heterojunction solar cells | |
Shin et al. | Tailoring of electron-collecting oxide nanoparticulate layer for flexible perovskite solar cells | |
Liu et al. | 2D ZnIn2S4 nanosheet/1D TiO2 nanorod heterostructure arrays for improved photoelectrochemical water splitting | |
Liu et al. | The application of highly doped single-layer graphene as the top electrodes of semitransparent organic solar cells | |
Yang et al. | Semi-transparent ZnO-CuI/CuSCN photodiode detector with narrow-band UV photoresponse | |
Li et al. | High-performance transparent ultraviolet photodetectors based on InGaZnO superlattice nanowire arrays | |
Adepu et al. | High-Performance Visible Light Photodetector Based on 1D SnO2 Nanofibers with a Ti3C2T x (MXene) Electron Transport Layer | |
Tang et al. | p–n heterojunction on ordered ZnO nanowires/polyaniline microrods double array | |
Chen et al. | Novel Self-Powered Photodetector with Binary Photoswitching Based on SnS x/TiO2 Heterojunctions | |
Sun et al. | In situ conformal coating of polyaniline on gan microwires for ultrafast, self-driven heterojunction ultraviolet photodetectors | |
Patel et al. | One-dimensional/two-dimensional/three-dimensional dual heterostructure based on MoS2-modified ZnO-heterojunction diode with silicon | |
Nguyen et al. | MXene-integrated metal oxide transparent photovoltaics and self-powered photodetectors | |
Peng et al. | PbS Quantum Dots/2D Nonlayered CdS x Se1–x Nanosheet Hybrid Nanostructure for High-Performance Broadband Photodetectors | |
Zhu et al. | Boosting fiber-shaped photodetectors via “soft” interfaces | |
Kim et al. | Thermally stable silver nanowires-embedding metal oxide for Schottky junction solar cells |