[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

Bolchini et al., 2003 - Google Patents

An integrated design approach for self-checking FPGAs

Bolchini et al., 2003

View PDF
Document ID
669670845527887510
Author
Bolchini C
Salice F
Sciuto D
Zavaglia R
Publication year
Publication venue
Proceedings 18th IEEE Symposium on Defect and Fault Tolerance in VLSI Systems

External Links

Snippet

This paper proposes a methodology for designing FPGAs able to self-detect the occurrence of hardware failures, integrated in a standard, industrial design flow. The approach improves the results proposed in the past, by defining a testing environment which takes into account …
Continue reading at www.researchgate.net (PDF) (other versions)

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/50Computer-aided design
    • G06F17/5009Computer-aided design using simulation
    • G06F17/5022Logic simulation, e.g. for logic circuit operation
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/50Computer-aided design
    • G06F17/5045Circuit design
    • G06F17/5054Circuit design for user-programmable logic devices, e.g. field programmable gate arrays [FPGA]
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • G01R31/317Testing of digital circuits
    • G01R31/3181Functional testing
    • G01R31/3183Generation of test inputs, e.g. test vectors, patterns or sequence
    • G01R31/318385Random or pseudo-random test pattern
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • G01R31/317Testing of digital circuits
    • G01R31/3181Functional testing
    • G01R31/3185Reconfiguring for testing, e.g. LSSD, partitioning
    • G01R31/318533Reconfiguring for testing, e.g. LSSD, partitioning using scanning techniques, e.g. LSSD, Boundary Scan, JTAG
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • G01R31/317Testing of digital circuits
    • G01R31/3181Functional testing
    • G01R31/3183Generation of test inputs, e.g. test vectors, patterns or sequence
    • G01R31/318342Generation of test inputs, e.g. test vectors, patterns or sequence by preliminary fault modelling, e.g. analysis, simulation
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F11/00Error detection; Error correction; Monitoring
    • G06F11/22Detection or location of defective computer hardware by testing during standby operation or during idle time, e.g. start-up testing
    • G06F11/2205Detection or location of defective computer hardware by testing during standby operation or during idle time, e.g. start-up testing using arrangements specific to the hardware being tested
    • G06F11/2215Detection or location of defective computer hardware by testing during standby operation or during idle time, e.g. start-up testing using arrangements specific to the hardware being tested to test error correction or detection circuits
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F11/00Error detection; Error correction; Monitoring
    • G06F11/22Detection or location of defective computer hardware by testing during standby operation or during idle time, e.g. start-up testing
    • G06F11/26Functional testing
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F11/00Error detection; Error correction; Monitoring
    • G06F11/07Error detection; Error correction; Monitoring responding to the occurence of a fault, e.g. fault tolerance
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F2217/00Indexing scheme relating to computer aided design [CAD]
    • G06F2217/70Fault tolerant, i.e. transient fault suppression
    • HELECTRICITY
    • H03BASIC ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K19/00Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits
    • H03K19/02Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits using specified components
    • H03K19/173Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits using specified components using elementary logic circuits as components
    • H03K19/177Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits using specified components using elementary logic circuits as components arranged in matrix form
    • H03K19/17748Structural details of configuration resources
    • H03K19/17764Structural details of configuration resources for reliability
    • HELECTRICITY
    • H03BASIC ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K19/00Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits
    • H03K19/02Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits using specified components
    • H03K19/173Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits using specified components using elementary logic circuits as components
    • H03K19/177Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits using specified components using elementary logic circuits as components arranged in matrix form
    • H03K19/17724Structural details of logic blocks
    • HELECTRICITY
    • H03BASIC ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K19/00Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits
    • H03K19/02Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits using specified components
    • H03K19/173Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits using specified components using elementary logic circuits as components
    • H03K19/177Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits using specified components using elementary logic circuits as components arranged in matrix form
    • H03K19/17704Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits using specified components using elementary logic circuits as components arranged in matrix form the logic functions being realised by the interconnection of rows and columns

Similar Documents

Publication Publication Date Title
Bellato et al. Evaluating the effects of SEUs affecting the configuration memory of an SRAM-based FPGA
Sterpone et al. Analysis of the robustness of the TMR architecture in SRAM-based FPGAs
Sterpone et al. A new reliability-oriented place and route algorithm for SRAM-based FPGAs
de Lima Kastensmidt et al. Designing fault-tolerant techniques for SRAM-based FPGAs
Bolchini et al. TMR and Partial Dynamic Reconfiguration to mitigate SEU faults in FPGAs
US9047429B2 (en) In-place resynthesis and remapping techniques for soft error mitigation in FPGA
Sterpone et al. A novel fault tolerant and runtime reconfigurable platform for satellite payload processing
Tiwari et al. Enhanced reliability of finite-state machines in FPGA through efficient fault detection and correction
Alderighi et al. A fault injection tool for SRAM-based FPGAs
Villalta et al. SEU emulation in industrial SoCs combining microprocessor and FPGA
Sterpone et al. An analysis based on fault injection of hardening techniques for SRAM-based FPGAs
Asadi et al. An analytical approach for soft error rate estimation of SRAM-based FPGAs
Sterpone et al. On the design of tunable fault tolerant circuits on SRAM-based FPGAs for safety critical applications
Bolchini et al. Designing self-checking FPGAs through error detection codes
Nazar et al. Fast error detection through efficient use of hardwired resources in FPGAs
Bolchini et al. An integrated design approach for self-checking FPGAs
Suvorova et al. Reconfigurable NoC development with fault mitigation
Niknahad et al. A study on fine granular fault tolerance methodologies for FPGAs
Asadi et al. Evaluation of fault-tolerant designs implemented on SRAM-based FPGAs
Violante et al. Analyzing SEU effects is SRAM-based FPGAsb
Reorda et al. Efficient estimation of SEU effects in SRAM-based FPGAs
Kumar et al. Heterogeneous redundancy for fault and defect tolerance with complexity independent area overhead
Pontarelli et al. System-on-chip oriented fault-tolerant sequential systems implementation methodology
Su et al. A phase assignment method for virtual-wire-based hardware emulation
Sun et al. Design and implementation of a parity-based BIST scheme for FPGA global interconnects