Zimbelman et al., 1995 - Google Patents
The attitude control system design for the transition region and coronal explorer missionZimbelman et al., 1995
View PDF- Document ID
- 6658483571524583932
- Author
- Zimbelman D
- Wilmot J
- Evangelista S
- Publication year
External Links
Snippet
This paper presents an overview of the Attitude Control System (ACS) design for the Transition Region And Coronal Explorer (TRACE) satellite mission. The TRACE spacecraft is the fourth in NASA's SMall EXplorer (SMEX) series of missions and is scheduled for …
- 238000005516 engineering process 0 abstract description 9
Classifications
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05D—SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
- G05D1/00—Control of position, course or altitude of land, water, air, or space vehicles, e.g. automatic pilot
- G05D1/08—Control of attitude, i.e. control of roll, pitch, or yaw
- G05D1/0883—Control of attitude, i.e. control of roll, pitch, or yaw specially adapted for space vehicles
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01C—MEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
- G01C21/00—Navigation; Navigational instruments not provided for in preceding groups
- G01C21/10—Navigation; Navigational instruments not provided for in preceding groups by using measurements of speed or acceleration
- G01C21/12—Navigation; Navigational instruments not provided for in preceding groups by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning
- G01C21/16—Navigation; Navigational instruments not provided for in preceding groups by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning by integrating acceleration or speed, i.e. inertial navigation
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64G—COSMONAUTICS; VEHICLES OR EQUIPMENT THEREFOR
- B64G1/00—Cosmonautic vehicles
- B64G1/22—Parts of, or equipment specially adapted for fitting in or to, cosmonautic vehicles
- B64G1/24—Guiding or controlling apparatus, e.g. for attitude control
- B64G1/28—Guiding or controlling apparatus, e.g. for attitude control using inertia or gyro effect
- B64G1/283—Guiding or controlling apparatus, e.g. for attitude control using inertia or gyro effect using reaction wheels
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64G—COSMONAUTICS; VEHICLES OR EQUIPMENT THEREFOR
- B64G1/00—Cosmonautic vehicles
- B64G1/22—Parts of, or equipment specially adapted for fitting in or to, cosmonautic vehicles
- B64G1/24—Guiding or controlling apparatus, e.g. for attitude control
- B64G1/36—Guiding or controlling apparatus, e.g. for attitude control using sensors, e.g. sun-sensors, horizon sensors
- B64G1/363—Guiding or controlling apparatus, e.g. for attitude control using sensors, e.g. sun-sensors, horizon sensors using sun sensors
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64G—COSMONAUTICS; VEHICLES OR EQUIPMENT THEREFOR
- B64G1/00—Cosmonautic vehicles
- B64G1/22—Parts of, or equipment specially adapted for fitting in or to, cosmonautic vehicles
- B64G1/24—Guiding or controlling apparatus, e.g. for attitude control
- B64G1/28—Guiding or controlling apparatus, e.g. for attitude control using inertia or gyro effect
- B64G1/281—Spin-stabilised spacecraft
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64G—COSMONAUTICS; VEHICLES OR EQUIPMENT THEREFOR
- B64G1/00—Cosmonautic vehicles
- B64G1/22—Parts of, or equipment specially adapted for fitting in or to, cosmonautic vehicles
- B64G1/24—Guiding or controlling apparatus, e.g. for attitude control
- B64G1/36—Guiding or controlling apparatus, e.g. for attitude control using sensors, e.g. sun-sensors, horizon sensors
- B64G1/361—Guiding or controlling apparatus, e.g. for attitude control using sensors, e.g. sun-sensors, horizon sensors using star sensors
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64G—COSMONAUTICS; VEHICLES OR EQUIPMENT THEREFOR
- B64G1/00—Cosmonautic vehicles
- B64G1/22—Parts of, or equipment specially adapted for fitting in or to, cosmonautic vehicles
- B64G1/24—Guiding or controlling apparatus, e.g. for attitude control
- B64G1/26—Guiding or controlling apparatus, e.g. for attitude control using jets
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64G—COSMONAUTICS; VEHICLES OR EQUIPMENT THEREFOR
- B64G1/00—Cosmonautic vehicles
- B64G1/22—Parts of, or equipment specially adapted for fitting in or to, cosmonautic vehicles
- B64G1/24—Guiding or controlling apparatus, e.g. for attitude control
- B64G1/32—Guiding or controlling apparatus, e.g. for attitude control using earth's magnetic field
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64G—COSMONAUTICS; VEHICLES OR EQUIPMENT THEREFOR
- B64G1/00—Cosmonautic vehicles
- B64G1/22—Parts of, or equipment specially adapted for fitting in or to, cosmonautic vehicles
- B64G1/24—Guiding or controlling apparatus, e.g. for attitude control
- B64G1/38—Guiding or controlling apparatus, e.g. for attitude control damping of oscillations, e.g. nutation dampers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64G—COSMONAUTICS; VEHICLES OR EQUIPMENT THEREFOR
- B64G1/00—Cosmonautic vehicles
- B64G1/22—Parts of, or equipment specially adapted for fitting in or to, cosmonautic vehicles
- B64G1/24—Guiding or controlling apparatus, e.g. for attitude control
- B64G2001/245—Spacecraft attitude control, e.g. attitude control algorithms
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64G—COSMONAUTICS; VEHICLES OR EQUIPMENT THEREFOR
- B64G1/00—Cosmonautic vehicles
- B64G1/10—Artificial satellites; Systems of such satellites; Interplanetary vehicles
- B64G1/1014—Navigation satellites
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0683098B1 (en) | Spacecraft attitude determination using sun sensor, earth sensor and space-to-ground link | |
US8706322B2 (en) | Method and computer program product for controlling inertial attitude of an artificial satellite by applying gyroscopic precession to maintain the spin axis perpendicular to sun lines | |
Goswami et al. | Analysis of GRACE Follow-On Laser Ranging Interferometer derived inter-satellite pointing angles | |
US20090012662A1 (en) | Method and apparatus for determining a satellite attitude using crosslink reference signals | |
US6142423A (en) | Ephemeris/attitude reference determination using on-board optics and other satellite ephemeris | |
Dougherty et al. | Space telescope pointing control system | |
US6216983B1 (en) | Ephemeris/attitude reference determination using communications links | |
Steffes et al. | Deep space autonomous navigation options for future missions | |
Steyn et al. | An attitude control system for a low-cost Earth observation satellite with orbit maintenance capability | |
Zimbelman et al. | The attitude control system design for the transition region and coronal explorer mission | |
Cossavella et al. | Attitude Control on GRACE Follow-On: Experiences from the First Years in Orbit | |
Chubb et al. | Attitude control and precision pointing of Apollo Telescope Mount. | |
Wie et al. | Attitude and orbit control systems | |
Starin et al. | Attitude Control System Design for the Solar Dynamics Observatory | |
Steyn | Stability, Pointing, and Orientation | |
Fujita et al. | Lessons Learned from On-orbit Gyroscope Malfunction and Recovery Operation of Microsatellite RISESAT | |
Thienel et al. | Results of the magnetometer navigation (MAGNAV) inflight experiment | |
Bauer et al. | GADACS: A GPS attitude determination and control experiment on a spartan spacecraft | |
Markley et al. | Attitude control system of the wilkinson microwave anisotropy probe | |
Herman et al. | Attitude Dynamics | |
Travis | Analysis and design of attitude determination and control systems onboard micro satellites utilizing spaceborne synthetic aperture radar | |
Wong et al. | Inertial attitude determination for a dual-spin planetary spacecraft | |
Faller | Attitude and Orbit Control Subsystem Operations | |
Axelrad et al. | Closed loop navigation and guidance for gravity probe B orbit insertion | |
LINDER et al. | Guidance, navigation, and control subsystem for the EOS-AM spacecraft |