[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

Da Silva et al., 2011 - Google Patents

Single-stage high-power-factor dimmable lighting system for electrodeless fluorescent lamp

Da Silva et al., 2011

Document ID
6517158175327379588
Author
Da Silva M
Fraytag J
Chagas N
Schlittler M
Dalla Costa M
Pinto R
Seidel A
do Prado R
Publication year
Publication venue
2011 IEEE International Symposium on Industrial Electronics

External Links

Snippet

The use of the electrodeless fluorescent lamps has been increasing, because of their features such as lifetime and lumen efficiency, when compared to conventional fluorescent and high pressure sodium lamps. The single-stage high-power-factor electronic ballast for …
Continue reading at ieeexplore.ieee.org (other versions)

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHTING NOT OTHERWISE PROVIDED FOR
    • H05B41/00Circuit arrangements or apparatus for igniting or operating discharge lamps
    • H05B41/14Circuit arrangements
    • H05B41/26Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc
    • H05B41/28Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc using static converters
    • H05B41/282With semiconductor devices
    • H05B41/2825With semiconductor devices by means of a bridge converter in the final stage
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHTING NOT OTHERWISE PROVIDED FOR
    • H05B41/00Circuit arrangements or apparatus for igniting or operating discharge lamps
    • H05B41/14Circuit arrangements
    • H05B41/26Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc
    • H05B41/28Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc using static converters
    • H05B41/295Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc using static converters with semiconductor devices and specially adapted for lamps with preheating electrodes, e.g. for fluorescent lamps
    • H05B41/298Arrangements for protecting lamps or circuits against abnormal operating conditions
    • H05B41/2988Arrangements for protecting lamps or circuits against abnormal operating conditions for protecting the lamp against abnormal operating conditions
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHTING NOT OTHERWISE PROVIDED FOR
    • H05B41/00Circuit arrangements or apparatus for igniting or operating discharge lamps
    • H05B41/14Circuit arrangements
    • H05B41/36Controlling
    • H05B41/38Controlling the intensity of light
    • H05B41/39Controlling the intensity of light continuously
    • H05B41/392Controlling the intensity of light continuously using semiconductor devices, e.g. thyristor
    • H05B41/3921Controlling the intensity of light continuously using semiconductor devices, e.g. thyristor with possibility of light intensity variations
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHTING NOT OTHERWISE PROVIDED FOR
    • H05B33/00Electroluminescent light sources
    • H05B33/02Details
    • H05B33/08Circuit arrangements not adapted to a particular application
    • H05B33/0803Circuit arrangements not adapted to a particular application for light emitting diodes (LEDs) comprising only inorganic semi-conductor materials
    • H05B33/0806Structural details of the circuit
    • H05B33/0809Structural details of the circuit in the conversion stage
    • H05B33/0815Structural details of the circuit in the conversion stage with a controlled switching regulator
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHTING NOT OTHERWISE PROVIDED FOR
    • H05B41/00Circuit arrangements or apparatus for igniting or operating discharge lamps
    • H05B41/14Circuit arrangements
    • H05B41/26Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc
    • H05B41/28Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc using static converters
    • H05B41/288Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc using static converters with semiconductor devices and specially adapted for lamps without preheating electrodes, e.g. for high-intensity discharge lamps, high-pressure mercury or sodium lamps or low-pressure sodium lamps
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BINDEXING SCHEME RELATING TO CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. INCLUDING HOUSING AND APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion
    • Y02B70/12Power factor correction technologies for power supplies
    • Y02B70/126Active technologies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BINDEXING SCHEME RELATING TO CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. INCLUDING HOUSING AND APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B20/00Energy efficient lighting technologies
    • Y02B20/16Gas discharge lamps, e.g. fluorescent lamps, high intensity discharge lamps [HID] or molecular radiators
    • Y02B20/20High pressure [UHP] or high intensity discharge lamps [HID]
    • Y02B20/202Specially adapted circuits
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BINDEXING SCHEME RELATING TO CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. INCLUDING HOUSING AND APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B20/00Energy efficient lighting technologies
    • Y02B20/16Gas discharge lamps, e.g. fluorescent lamps, high intensity discharge lamps [HID] or molecular radiators
    • Y02B20/18Low pressure and fluorescent lamps
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BINDEXING SCHEME RELATING TO CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. INCLUDING HOUSING AND APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B20/00Energy efficient lighting technologies
    • Y02B20/10Energy saving technologies for incandescent lamps
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BINDEXING SCHEME RELATING TO CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. INCLUDING HOUSING AND APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B20/00Energy efficient lighting technologies
    • Y02B20/30Semiconductor lamps, e.g. solid state lamps [SSL] light emitting diodes [LED] or organic LED [OLED]
    • Y02B20/34Semiconductor lamps, e.g. solid state lamps [SSL] light emitting diodes [LED] or organic LED [OLED] inorganic LEDs
    • Y02B20/341Specially adapted circuits
    • Y02B20/346Switching regulators

Similar Documents

Publication Publication Date Title
Gacio et al. A universal-input single-stag2e high-power-factor power supply for HB-LEDs based on integrated buck–flyback converter
Lam et al. Isolated AC/DC offline high power factor single-switch LED drivers without electrolytic capacitors
da Silva et al. Analysis and design of a single-stage high-power-factor dimmable electronic ballast for electrodeless fluorescent lamp
Marchesan et al. Integrated zeta–flyback electronic ballast to supply high-intensity discharge lamps
Wang et al. A novel valley-fill single-stage boost-forward converter with optimized performance in universal-line range for dimmable LED lighting
De Morais et al. A high power factor ballast using a single switch with both power stages integrated
Da Silva et al. Single-stage high-power-factor dimmable lighting system for electrodeless fluorescent lamp
Dalla Costa et al. Integrated power topologies to supply HPS lamps: A comparative study
Hu et al. Universal-input single-stage PFC flyback with variable boost inductance for high-brightness LED applications
Cosetin et al. Off-line single-stage SEPIC-Buck converter for dimmable LED lighting with reduced storage capacitor
Venturini et al. Analysis and design methodology of a self-oscillating system based on integrated sepic half-bridge for LED lightning applications
Dalla Costa et al. Electronic ballasts for HID lamps
Chiu et al. Single-stage voltage source charge-pump electronic ballast with switched-capacitor dimmer for multiple fluorescent lamps
Luz et al. An integrated insulated buck-Flyback converter to feed LED's lamps to street lighting with reduced capacitances
Menke et al. High power factor dimmable self-oscillating electronic ballast with variable inductor control
da Silva et al. Dimmable high power factor single-stage electronic ballast for electrodeless fluorescent lamps
Gobbato et al. Comparison between stages connections of DC converters for street lighting system based on LED
Tao Advanced high-frequency electronic ballasting techniques for gas discharge lamps
Shrivastava et al. PFC Cuk converter based electronic ballast for an 18 W compact fluorescent lamp
Da Silva et al. A dimmable Ćuk half-bridge single-stage converter applied to electrodeless fluorescent lamps
Dai et al. A dimmer circuit for various lighting devices
Lam et al. A dimmable electronic ballast with unity power factor based on a single-stage current-fed resonant inverter
Brand et al. Generalized analysis of non-isolated integrated LED drivers
Menke et al. Universal input voltage LED driver with dimming capability and reduced DC-link capacitance
Menke et al. Comparison of self-oscillating electronic ballasts dimming methods with power factor correction for fluorescent lamps