[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

Hsu et al., 2009 - Google Patents

Timing jitter and modulation profile extraction for spread-spectrum clocks

Hsu et al., 2009

View PDF
Document ID
6421877291315072949
Author
Hsu J
Su C
Publication year
Publication venue
IEEE Transactions on Instrumentation and Measurement

External Links

Snippet

This paper presents a built-in jitter measurement approach for measuring the timing jitter of spread-spectrum clocks (SSCs) and a jitter estimation method for validating the approach. Because of the lack of dedicated measurement instruments for SSC timing jitter …
Continue reading at ir.lib.nycu.edu.tw (PDF) (other versions)

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • G01R31/317Testing of digital circuits
    • G01R31/31708Analysis of signal quality
    • G01R31/31709Jitter measurements; Jitter generators
    • HELECTRICITY
    • H03BASIC ELECTRONIC CIRCUITRY
    • H03LAUTOMATIC CONTROL, STARTING, SYNCHRONISATION, OR STABILISATION OF GENERATORS OF ELECTRONIC OSCILLATIONS OR PULSES
    • H03L7/00Automatic control of frequency or phase; Synchronisation
    • H03L7/06Automatic control of frequency or phase; Synchronisation using a reference signal applied to a frequency- or phase-locked loop
    • H03L7/08Details of the phase-locked loop
    • H03L7/085Details of the phase-locked loop concerning mainly the frequency- or phase-detection arrangement including the filtering or amplification of its output signal
    • H03L7/093Details of the phase-locked loop concerning mainly the frequency- or phase-detection arrangement including the filtering or amplification of its output signal using special filtering or amplification characteristics in the loop
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • G01R31/317Testing of digital circuits
    • G01R31/31725Timing aspects, e.g. clock distribution, skew, propagation delay
    • HELECTRICITY
    • H03BASIC ELECTRONIC CIRCUITRY
    • H03LAUTOMATIC CONTROL, STARTING, SYNCHRONISATION, OR STABILISATION OF GENERATORS OF ELECTRONIC OSCILLATIONS OR PULSES
    • H03L7/00Automatic control of frequency or phase; Synchronisation
    • H03L7/06Automatic control of frequency or phase; Synchronisation using a reference signal applied to a frequency- or phase-locked loop
    • H03L7/08Details of the phase-locked loop
    • H03L7/10Details of the phase-locked loop for assuring initial synchronisation or for broadening the capture range
    • HELECTRICITY
    • H03BASIC ELECTRONIC CIRCUITRY
    • H03LAUTOMATIC CONTROL, STARTING, SYNCHRONISATION, OR STABILISATION OF GENERATORS OF ELECTRONIC OSCILLATIONS OR PULSES
    • H03L7/00Automatic control of frequency or phase; Synchronisation
    • H03L7/06Automatic control of frequency or phase; Synchronisation using a reference signal applied to a frequency- or phase-locked loop
    • H03L7/08Details of the phase-locked loop
    • H03L7/099Details of the phase-locked loop concerning mainly the controlled oscillator of the loop
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • G01R31/317Testing of digital circuits
    • G01R31/3181Functional testing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • G01R19/25Arrangements for measuring currents or voltages or for indicating presence or sign thereof using digital measurement techniques
    • HELECTRICITY
    • H03BASIC ELECTRONIC CIRCUITRY
    • H03LAUTOMATIC CONTROL, STARTING, SYNCHRONISATION, OR STABILISATION OF GENERATORS OF ELECTRONIC OSCILLATIONS OR PULSES
    • H03L7/00Automatic control of frequency or phase; Synchronisation
    • H03L7/06Automatic control of frequency or phase; Synchronisation using a reference signal applied to a frequency- or phase-locked loop
    • H03L7/16Indirect frequency synthesis, i.e. generating a desired one of a number of predetermined frequencies using a frequency- or phase-locked loop
    • H03L7/18Indirect frequency synthesis, i.e. generating a desired one of a number of predetermined frequencies using a frequency- or phase-locked loop using a frequency divider or counter in the loop
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R29/00Arrangements for measuring or indicating electric quantities not covered by groups G01R19/00 - G01R27/00
    • G01R29/26Measuring noise figure; Measuring signal-to-noise ratio Measuring jitter, i.e. phase noise
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R23/00Arrangements for measuring frequencies; Arrangements for analysing frequency spectra
    • G01R23/02Arrangements for measuring frequency, e.g. pulse repetition rate Arrangements for measuring period of current or voltage
    • G01R23/14Arrangements for measuring frequency, e.g. pulse repetition rate Arrangements for measuring period of current or voltage by heterodyning; by beat-frequency comparison
    • G01R23/145Arrangements for measuring frequency, e.g. pulse repetition rate Arrangements for measuring period of current or voltage by heterodyning; by beat-frequency comparison by heterodyning or by beat-frequency comparison with the harmonic of an oscillator

Similar Documents

Publication Publication Date Title
Chan et al. A jitter characterization system using a component-invariant Vernier delay line
US7158899B2 (en) Circuit and method for measuring jitter of high speed signals
US8284886B2 (en) Radio frequency built-in self test for quality monitoring of local oscillator and transmitter
Tabatabaei et al. Embedded timing analysis: A SoC infrastructure
US9116204B2 (en) On-die all-digital delay measurement circuit
US20040062301A1 (en) Jitter measurement apparatus and jitter measurement method
TW201235681A (en) Method and circuit of clock data recovery with built in jitter tolerance test
Hsu et al. BIST for measuring clock jitter of charge-pump phase-locked loops
Liang et al. On-chip measurement of clock and data jitter with sub-picosecond accuracy for 10 Gb/s multilane CDRs
Yamaguchi et al. Extraction of instantaneous and RMS sinusoidal jitter using an analytic signal method
Yamaguchi et al. Extraction of peak-to-peak and RMS sinusoidal jitter using an analytic signal method
JP5328096B2 (en) Jitter measuring apparatus, jitter measuring method, test apparatus, and electronic device
JP5113368B2 (en) Jitter measuring apparatus, jitter measuring method, test apparatus, and electronic device
Hsu et al. Timing jitter and modulation profile extraction for spread-spectrum clocks
US11018679B1 (en) On-chip phase-locked loop response measurement
Kim On-chip measurement of jitter transfer and supply sensitivity of PLL/DLLs
Biereigel et al. Methods for clock signal characterization using FPGA resources
Ong et al. A scalable on-chip jitter extraction technique
Ouda et al. Digital on-chip phase noise measurement
Wang et al. An all-digital built-in self-test technique for transfer function characterization of RF PLLs
Park et al. All-digital PLL frequency and phase noise degradation measurements using simple on-chip monitoring circuits
Erdogan et al. A robust, self-tuning CMOS circuit for built-in Go/No-Go testing of synthesizer phase noise
Goyal et al. Reducing sampling clock jitter to improve snr measurement of A/D converters in production test
Xia et al. A methodology of fault detection using design for testability of CP-PLL
Wu et al. Design for test of a mm-Wave ADPLL-based transmitter