Saarinen et al., 2009 - Google Patents
A sensor-based personal navigation system and its application for incorporating humans into a human-robot teamSaarinen et al., 2009
View PDF- Document ID
- 6402992443381155612
- Author
- Saarinen J
- et al.
- Publication year
External Links
Snippet
In this thesis methods for the sensor-based localisation of human beings are studied. The thesis presents the theory, test results and a realisation of the methods, which is called PeNa. PeNa is further applied to incorporate a human into a human-robot team that …
- 230000004807 localization 0 abstract description 103
Classifications
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05D—SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
- G05D1/00—Control of position, course or altitude of land, water, air, or space vehicles, e.g. automatic pilot
- G05D1/02—Control of position or course in two dimensions
- G05D1/021—Control of position or course in two dimensions specially adapted to land vehicles
- G05D1/0268—Control of position or course in two dimensions specially adapted to land vehicles using internal positioning means
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05D—SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
- G05D1/00—Control of position, course or altitude of land, water, air, or space vehicles, e.g. automatic pilot
- G05D1/02—Control of position or course in two dimensions
- G05D1/021—Control of position or course in two dimensions specially adapted to land vehicles
- G05D1/0287—Control of position or course in two dimensions specially adapted to land vehicles involving a plurality of land vehicles, e.g. fleet or convoy travelling
- G05D1/0291—Fleet control
- G05D1/0295—Fleet control by at least one leading vehicle of the fleet
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05D—SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
- G05D1/00—Control of position, course or altitude of land, water, air, or space vehicles, e.g. automatic pilot
- G05D1/02—Control of position or course in two dimensions
- G05D1/021—Control of position or course in two dimensions specially adapted to land vehicles
- G05D1/0231—Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05D—SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
- G05D1/00—Control of position, course or altitude of land, water, air, or space vehicles, e.g. automatic pilot
- G05D1/02—Control of position or course in two dimensions
- G05D1/021—Control of position or course in two dimensions specially adapted to land vehicles
- G05D1/0276—Control of position or course in two dimensions specially adapted to land vehicles using signals provided by a source external to the vehicle
- G05D1/028—Control of position or course in two dimensions specially adapted to land vehicles using signals provided by a source external to the vehicle using a RF signal
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01C—MEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
- G01C21/00—Navigation; Navigational instruments not provided for in preceding groups
- G01C21/10—Navigation; Navigational instruments not provided for in preceding groups by using measurements of speed or acceleration
- G01C21/12—Navigation; Navigational instruments not provided for in preceding groups by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning
- G01C21/16—Navigation; Navigational instruments not provided for in preceding groups by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning by integrating acceleration or speed, i.e. inertial navigation
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05D—SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
- G05D1/00—Control of position, course or altitude of land, water, air, or space vehicles, e.g. automatic pilot
- G05D1/02—Control of position or course in two dimensions
- G05D1/021—Control of position or course in two dimensions specially adapted to land vehicles
- G05D1/0255—Control of position or course in two dimensions specially adapted to land vehicles using acoustic signals, e.g. ultra-sonic singals
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S5/00—Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
- G01S5/02—Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves
- G01S5/0205—Details
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01C—MEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
- G01C21/00—Navigation; Navigational instruments not provided for in preceding groups
- G01C21/20—Instruments for performing navigational calculations
- G01C21/206—Instruments for performing navigational calculations specially adapted for indoor navigation
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S19/00—Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
- G01S19/38—Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system
- G01S19/39—Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system the satellite radio beacon positioning system transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
- G01S19/42—Determining position
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S1/00—Beacons or beacon systems transmitting signals having a characteristic or characteristics capable of being detected by non-directional receivers and defining directions, positions, or position lines fixed relatively to the beacon transmitters; Receivers co-operating therewith
- G01S1/72—Beacons or beacon systems transmitting signals having a characteristic or characteristics capable of being detected by non-directional receivers and defining directions, positions, or position lines fixed relatively to the beacon transmitters; Receivers co-operating therewith using ultrasonic, sonic or infrasonic waves
- G01S1/76—Systems for determining direction or position line
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05D—SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
- G05D2201/00—Application
- G05D2201/02—Control of position of land vehicles
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Alatise et al. | A review on challenges of autonomous mobile robot and sensor fusion methods | |
Smith et al. | On the representation and estimation of spatial uncertainty | |
US9146113B1 (en) | System and method for localizing a trackee at a location and mapping the location using transitions | |
Apostolopoulos et al. | Integrated online localization and navigation for people with visual impairments using smart phones | |
Ali et al. | Tightly coupling fusion of UWB ranging and IMU pedestrian dead reckoning for indoor localization | |
US20060293839A1 (en) | System, method and apparatus for providing navigational assistance | |
Hesch et al. | An indoor localization aid for the visually impaired | |
Hesch et al. | Design and analysis of a portable indoor localization aid for the visually impaired | |
Baglietto et al. | Human navigation and mapping with a 6DOF IMU and a laser scanner | |
Kachurka et al. | WeCo-SLAM: Wearable cooperative SLAM system for real-time indoor localization under challenging conditions | |
Jacquet et al. | Electronic locomotion aids for the blind: Towards more assistive systems | |
Saadatzadeh et al. | An improvement in smartphone-based 3D indoor positioning using an effective map matching method | |
Klingbeil et al. | Multi-modal sensor data and information fusion for localization in indoor environments | |
Saarinen | A sensor-based personal navigation system and its application for incorporating humans into a human-robot team | |
Robertson et al. | Inertial systems based joint mapping and positioning for pedestrian navigation | |
Marjovi et al. | Guardians robot swarm exploration and firefighter assistance | |
Davidson | Algorithms for autonomous personal navigation systems | |
Ray | Pedestrian navigation using particle filtering and a priori building maps | |
Kandalan et al. | A comprehensive survey of navigation systems for the visual impaired | |
Hou et al. | HINNet+ HeadSLAM: Robust inertial navigation with machine learning for long-term stable tracking | |
Kleiner | Mapping and exploration for search and rescue with humans and mobile robots | |
Spero | Simultaneous Localisation And Map building: the kidnapped way | |
Tang et al. | A novel GA-FCM strategy for motion learning and prediction: application in wireless tracking of intelligent subjects | |
Fischer et al. | SLAM for pedestrians and ultrasonic landmarks in emergency response scenarios | |
Dhanapal | Adaptive Indoor Pedestrian Tracking Using Foot-Mounted Miniature Inertial Sensor |