Åkesson, 2012 - Google Patents
An LLVM Back-end for REPLICA: Code Generation for a Multi-core VLIWProcessor with ChainingÅkesson, 2012
View PDF- Document ID
- 628856431591917012
- Author
- Åkesson D
- Publication year
External Links
Snippet
REPLICA is a PRAM-NUMA hybrid architecture, with support for instructionlevel parallelism as a VLIW architecture. REPLICA can also chain instructionsso that the output from an earlier instruction can be used as input to a laterinstruction in the same execution step.There …
- 238000005457 optimization 0 abstract description 56
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F8/00—Arrangements for software engineering
- G06F8/40—Transformations of program code
- G06F8/41—Compilation
- G06F8/44—Encoding
- G06F8/443—Optimisation
- G06F8/4441—Reducing the execution time required by the program code
- G06F8/4442—Reducing the number of cache misses; Data prefetching
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F8/00—Arrangements for software engineering
- G06F8/40—Transformations of program code
- G06F8/41—Compilation
- G06F8/45—Exploiting coarse grain parallelism in compilation, i.e. parallelism between groups of instructions
- G06F8/456—Parallelism detection
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F8/00—Arrangements for software engineering
- G06F8/40—Transformations of program code
- G06F8/41—Compilation
- G06F8/44—Encoding
- G06F8/445—Exploiting fine grain parallelism, i.e. parallelism at instruction level
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F8/00—Arrangements for software engineering
- G06F8/40—Transformations of program code
- G06F8/41—Compilation
- G06F8/42—Syntactic analysis
- G06F8/423—Preprocessors
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F8/00—Arrangements for software engineering
- G06F8/40—Transformations of program code
- G06F8/41—Compilation
- G06F8/43—Checking; Contextual analysis
- G06F8/433—Dependency analysis; Data or control flow analysis
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F8/00—Arrangements for software engineering
- G06F8/40—Transformations of program code
- G06F8/41—Compilation
- G06F8/43—Checking; Contextual analysis
- G06F8/436—Semantic checking
- G06F8/437—Type checking
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F9/00—Arrangements for programme control, e.g. control unit
- G06F9/06—Arrangements for programme control, e.g. control unit using stored programme, i.e. using internal store of processing equipment to receive and retain programme
- G06F9/30—Arrangements for executing machine-instructions, e.g. instruction decode
- G06F9/38—Concurrent instruction execution, e.g. pipeline, look ahead
- G06F9/3885—Concurrent instruction execution, e.g. pipeline, look ahead using a plurality of independent parallel functional units
- G06F9/3889—Concurrent instruction execution, e.g. pipeline, look ahead using a plurality of independent parallel functional units controlled by multiple instructions, e.g. MIMD, decoupled access or execute
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F9/00—Arrangements for programme control, e.g. control unit
- G06F9/06—Arrangements for programme control, e.g. control unit using stored programme, i.e. using internal store of processing equipment to receive and retain programme
- G06F9/44—Arrangements for executing specific programmes
- G06F9/455—Emulation; Software simulation, i.e. virtualisation or emulation of application or operating system execution engines
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F8/00—Arrangements for software engineering
- G06F8/40—Transformations of program code
- G06F8/51—Source to source
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F9/00—Arrangements for programme control, e.g. control unit
- G06F9/06—Arrangements for programme control, e.g. control unit using stored programme, i.e. using internal store of processing equipment to receive and retain programme
- G06F9/44—Arrangements for executing specific programmes
- G06F9/445—Programme loading or initiating
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F9/00—Arrangements for programme control, e.g. control unit
- G06F9/06—Arrangements for programme control, e.g. control unit using stored programme, i.e. using internal store of processing equipment to receive and retain programme
- G06F9/30—Arrangements for executing machine-instructions, e.g. instruction decode
- G06F9/30003—Arrangements for executing specific machine instructions
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F9/00—Arrangements for programme control, e.g. control unit
- G06F9/06—Arrangements for programme control, e.g. control unit using stored programme, i.e. using internal store of processing equipment to receive and retain programme
- G06F9/46—Multiprogramming arrangements
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F8/00—Arrangements for software engineering
- G06F8/30—Creation or generation of source code
- G06F8/31—Programming languages or programming paradigms
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F8/00—Arrangements for software engineering
- G06F8/40—Transformations of program code
- G06F8/52—Binary to binary
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F8/00—Arrangements for software engineering
- G06F8/70—Software maintenance or management
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F11/00—Error detection; Error correction; Monitoring
- G06F11/36—Preventing errors by testing or debugging software
- G06F11/362—Software debugging
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F17/00—Digital computing or data processing equipment or methods, specially adapted for specific functions
- G06F17/50—Computer-aided design
- G06F17/5045—Circuit design
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F8/00—Arrangements for software engineering
- G06F8/60—Software deployment
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Ruetsch et al. | CUDA Fortran for scientists and engineers: best practices for efficient CUDA Fortran programming | |
Schardl et al. | Tapir: Embedding fork-join parallelism into LLVM's intermediate representation | |
Alglave et al. | GPU concurrency: Weak behaviours and programming assumptions | |
Grosser et al. | Polyhedral AST generation is more than scanning polyhedra | |
Han et al. | hiCUDA: High-level GPGPU programming | |
JP4482454B2 (en) | Process for converting programs in high-level programming languages into unified executable elements of hybrid computing platforms | |
JP5851396B2 (en) | Processing method | |
JP4403080B2 (en) | Debug using control data flow graph with reconfigurable hardware emulation | |
Stratton et al. | Efficient compilation of fine-grained SPMD-threaded programs for multicore CPUs | |
JP2006505056A (en) | System and method for converting a control flow graph representation to a control data flow graph representation | |
Schardl et al. | Tapir: Embedding recursive fork-join parallelism into llvm’s intermediate representation | |
Reguly et al. | Vectorizing unstructured mesh computations for many-core architectures | |
Kristensen et al. | Fusion of parallel array operations | |
Kataev | LLVM based parallelization of C programs for GPU | |
Diamos | The design and implementation ocelot’s dynamic binary translator from ptx to multi-core x86 | |
Åkesson | An LLVM Back-end for REPLICA: Code Generation for a Multi-core VLIWProcessor with Chaining | |
Matz et al. | Automated partitioning of data-parallel kernels using polyhedral compilation | |
Bridges | The velocity compiler: Extracting efficient multicore execution from legacy sequential codes | |
Kandiah et al. | Parsimony: Enabling SIMD/Vector Programming in Standard Compiler Flows | |
Fumero et al. | Using compiler snippets to exploit parallelism on heterogeneous hardware: a Java reduction case study | |
Ferreira et al. | Graph-based code restructuring targeting HLS for FPGAs | |
Vandebon et al. | Meta-Programming Design-Flow Patterns for Automating Reusable Optimisations | |
Kalra | Design and evaluation of register allocation on gpus | |
Krolik et al. | rNdN: Fast Query Compilation for NVIDIA GPUs | |
Rohde et al. | Socao: Source-to-source opencl compiler for intel-altera fpgas |