Sutapun et al., 1999 - Google Patents
Pd-coated elastooptic fiber optic Bragg grating sensors for multiplexed hydrogen sensingSutapun et al., 1999
- Document ID
- 626111520314882387
- Author
- Sutapun B
- Tabib-Azar M
- Kazemi A
- Publication year
- Publication venue
- Sensors and Actuators B: Chemical
External Links
Snippet
We report a new type of optical hydrogen sensor with a fiber optic Bragg grating (FBG) coated with palladium thin film. The sensing mechanism in this device is based on mechanical stress that is induced in the palladium coating when it absorbs hydrogen. The …
- 229910052739 hydrogen 0 title abstract description 91
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using infra-red, visible or ultra-violet light
- G01N21/75—Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated
- G01N21/77—Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator
- G01N21/7703—Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator using reagent-clad optical fibres or optical waveguides
- G01N21/774—Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator using reagent-clad optical fibres or optical waveguides the reagent being on a grating or periodic structure
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01D—MEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
- G01D5/00—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
- G01D5/26—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infra-red, visible, or ultra-violet light
- G01D5/32—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infra-red, visible, or ultra-violet light with attenuation or whole or partial obturation of beams of light
- G01D5/34—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infra-red, visible, or ultra-violet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells
- G01D5/353—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infra-red, visible, or ultra-violet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01K—MEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
- G01K11/00—Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00
- G01K11/12—Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00 using change of colour or translucency
- G01K11/125—Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00 using change of colour or translucency using change in reflectance
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01L—MEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
- G01L1/00—Measuring force or stress in general
- G01L1/24—Measuring force or stress in general by measuring variations of optical properties of material when it is stressed, e.g. by photoelastic stress analysis using infra-red, visible light, ultra-violet
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01K—MEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
- G01K11/00—Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00
- G01K11/32—Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00 using changes in transmission, scattering or fluorescence in optical fibres
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01L—MEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
- G01L11/00—Measuring steady or quasi-steady pressure of a fluid or a fluent solid material by means not provided for in group G01L7/00 or G01L9/00
- G01L11/02—Measuring steady or quasi-steady pressure of a fluid or a fluent solid material by means not provided for in group G01L7/00 or G01L9/00 by optical means
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01D—MEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
- G01D5/00—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
- G01D5/26—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infra-red, visible, or ultra-violet light
- G01D5/268—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infra-red, visible, or ultra-violet light using optical fibres
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS, OR APPARATUS
- G02B6/00—Light guides
- G02B6/02—Optical fibre with cladding with or without a coating
- G02B6/02057—Optical fibre with cladding with or without a coating comprising gratings
- G02B6/02076—Refractive index modulation gratings, e.g. Bragg gratings
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01K—MEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
- G01K5/00—Measuring temperature based on the expansion or contraction of a material
- G01K5/48—Measuring temperature based on the expansion or contraction of a material the material being a solid
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01J—MEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRA-RED, VISIBLE OR ULTRA-VIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Sutapun et al. | Pd-coated elastooptic fiber optic Bragg grating sensors for multiplexed hydrogen sensing | |
Wu et al. | Optical fiber hydrogen sensor with single Sagnac interferometer loop based on vernier effect | |
Tien et al. | Hydrogen sensor based on side-polished fiber Bragg gratings coated with thin palladium film | |
Zhao et al. | Simultaneous measurement of RI and temperature based on the combination of Sagnac loop mirror and balloon-like interferometer | |
Wang et al. | High sensitivity humidity fiber-optic sensor based on all-agar Fabry–Perot interferometer | |
Schroeder et al. | Optical fiber Bragg grating hydrogen sensor based on evanescent-field interaction with palladium thin-film transducer | |
Tabib-Azar et al. | Highly sensitive hydrogen sensors using palladium coated fiber optics with exposed cores and evanescent field interactions | |
James et al. | Strain response of fibre Bragg grating sensors at cryogenic temperatures | |
Zalvidea et al. | Hydrogen sensor based on a palladium-coated fibre-taper with improved time-response | |
Lai et al. | Application of Fabry–Pérot and fiber Bragg grating pressure sensors to simultaneous measurement of liquid level and specific gravity | |
CN109709070B (en) | Refractive index and temperature double-parameter measuring method by using composite fiber grating sensor | |
Hongo et al. | Applications of fiber Bragg grating sensors and high‐speed interrogation techniques | |
Kreger et al. | Distributed strain and temperature sensing in plastic optical fiber using Rayleigh scatter | |
Novais et al. | Determination of thermo-optic coefficient of ethanol-water mixtures with optical fiber tip sensor | |
Wang et al. | Measurements of thermo-optic coefficient of standard single mode fiber in large temperature range | |
Bock et al. | Development of a polarimetric optical fiber sensor for electronic measurement of high pressure | |
Kacik et al. | Toluene optical fibre sensor based on air microcavity in PDMS | |
Fukano et al. | Sensitivity improvement of optical-fiber temperature sensor with solid cladding material based on multimode interference | |
Zhang et al. | Encapsulation research of microfiber Mach-Zehnder interferometer temperature and salinity sensor in seawater | |
Fadeev et al. | A fiber-optic sensor for simultaneous temperature and pressure measurements based on a Fabry–Perot interferometer and a fiber Bragg grating | |
Dai et al. | Highly sensitive liquid-level sensor based on weak uniform fiber Bragg grating with narrow-bandwidth | |
Wang et al. | Integrated and compact fiber-optic conductivity-temperature-depth (CTD) sensor for marine detection | |
Lu et al. | Polymer-coated fiber Bragg grating sensors for simultaneous monitoring of soluble analytes and temperature | |
Neves et al. | Humidity-insensitive optical fibers for distributed sensing applications | |
Shao et al. | Temperature-independent gas refractometer based on an S-taper fiber tailored fiber Bragg grating |