[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

Chen et al., 2017 - Google Patents

Mechanisms of Li+ ions in the emission enhancement of KMg4 (PO4) 3: Eu2+ for white light emitting diodes

Chen et al., 2017

Document ID
625681228877504631
Author
Chen J
Li C
Hui Z
Liu Y
Publication year
Publication venue
Inorganic chemistry

External Links

Snippet

Codoping with Li+ is a prevalent strategy to improve the optical efficiency of luminescent materials, while the mechanisms of enhancement are still ambiguous. Herein, we delineate the major ways by which Li+ enhanced the emission of orthophosphate phosphor KMg4 …
Continue reading at pubs.acs.org (other versions)

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; MISCELLANEOUS COMPOSITIONS; MISCELLANEOUS APPLICATIONS OF MATERIALS
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7728Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals comprising europium
    • C09K11/7734Aluminates; Silicates
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; MISCELLANEOUS COMPOSITIONS; MISCELLANEOUS APPLICATIONS OF MATERIALS
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7766Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing two or more rare earth metals
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3208Calcium oxide or oxide-forming salts thereof, e.g. lime
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BINDEXING SCHEME RELATING TO CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. INCLUDING HOUSING AND APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B20/00Energy efficient lighting technologies
    • Y02B20/16Gas discharge lamps, e.g. fluorescent lamps, high intensity discharge lamps [HID] or molecular radiators
    • Y02B20/18Low pressure and fluorescent lamps
    • Y02B20/181Fluorescent powders
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; MISCELLANEOUS COMPOSITIONS; MISCELLANEOUS APPLICATIONS OF MATERIALS
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands

Similar Documents

Publication Publication Date Title
Chen et al. Mechanisms of Li+ ions in the emission enhancement of KMg4 (PO4) 3: Eu2+ for white light emitting diodes
Huang et al. Tunable and white light emission of a single-phased Ba2Y (BO3) 2Cl: Bi3+, Eu3+ phosphor by energy transfer for ultraviolet converted white LEDs
Zhou et al. Cyan-green phosphor (Lu2M)(Al4Si) O12: Ce3+ for high-quality LED lamp: tunable photoluminescence properties and enhanced thermal stability
Fang et al. Cuboid-size-controlled color-tunable Eu-doped alkali–lithosilicate phosphors
Lin et al. Enhanced photoluminescence emission and thermal stability from introduced cation disorder in phosphors
Zhang et al. Composition Screening in Blue-Emitting Li4Sr1+ x Ca0. 97–x (SiO4) 2: Ce3+ Phosphors for High Quantum Efficiency and Thermally Stable Photoluminescence
Kang et al. Controlling the energy transfer via multi luminescent centers to achieve white light/tunable emissions in a single-phased X2-type Y2SiO5: Eu3+, Bi3+ phosphor for ultraviolet converted LEDs
Tang et al. Design and development of a bluish-green luminescent material (K2HfSi3O9: Eu2+) with robust thermal stability for white light-emitting diodes
Guo et al. Ca9Lu (PO4) 7: Eu2+, Mn2+: a potential single-phased white-light-emitting phosphor suitable for white-light-emitting diodes
Ding et al. Rare-earth-free high-efficiency narrow-band red-emitting Mg3Ga2GeO8: Mn4+ phosphor excited by near-UV light for white-light-emitting diodes
Hasegawa et al. Bluish-white luminescence in rare-earth-free vanadate garnet phosphors: structural characterization of LiCa3MV3O12 (M= Zn and Mg)
Xia et al. Structural and luminescence properties of yellow-emitting NaScSi2O6: Eu2+ phosphors: Eu2+ site preference analysis and generation of red emission by codoping Mn2+ for white-light-emitting diode applications
Lü et al. Tunable full-color emitting BaMg2Al6Si9O30: Eu2+, Tb3+, Mn2+ phosphors based on energy transfer
Long et al. Enhanced Luminescence Performances of Tunable Lu3–x Y x Al5O12: Mn4+ Red Phosphor by Ions of Rn+(Li+, Na+, Ca2+, Mg2+, Sr2+, Sc3+)
Liu et al. High efficiency green phosphor Ba9Lu2Si6O24: Tb3+: visible quantum cutting via cross-relaxation energy transfers
Zhang et al. Properties and application of single Eu2+-activated color tuning phosphors
Miao et al. Increased Eu2+ content and codoping Mn2+ induced tunable full-color emitting phosphor Ba1. 55Ca0. 45SiO4: Eu2+, Mn2+
Li et al. Color-tunable luminescence and energy transfer properties of Ca9Mg (PO4) 6F2: Eu2+, Mn2+ phosphors for UV-LEDs
Liu et al. Host-sensitized and tunable luminescence of GdNbO4: Ln3+ (Ln3+= Eu3+/Tb3+/Tm3+) nanocrystalline phosphors with abundant color
Chen et al. A highly efficient white light (Sr3, Ca, Ba)(PO4) 3Cl: Eu2+, Tb3+, Mn2+ phosphor via dual energy transfers for white light-emitting diodes
Yeh et al. Origin of thermal degradation of Sr2–x Si5N8: Eu x phosphors in air for light-emitting diodes
Saradhi et al. Photoluminescence studies on Eu2+-activated Li2SrSiO4 a potential orange-yellow phosphor for solid-state lighting
Jin et al. Luminescence Properties of Dual‐Emission (UV/Visible) Long Afterglow Phosphor SrZrO 3: Pr 3+
Lü et al. Tunable color of Ce3+/Tb3+/Mn2+-coactivated CaScAlSiO6 via energy transfer: a single-component red/white-emitting phosphor
Xia et al. Novel red-emitting Ba2Tb (BO3) 2Cl: Eu phosphor with efficient energy transfer for potential application in white light-emitting diodes