[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

Tan et al., 2014 - Google Patents

Joint cooperative spectrum sensing and MAC protocol design for multi-channel cognitive radio networks

Tan et al., 2014

View HTML @Full View
Document ID
6223165468661102618
Author
Tan L
Le L
Publication year
Publication venue
EURASIP Journal on Wireless Communications and Networking

External Links

Snippet

In this paper, we propose a semi-distributed cooperative spectrum sensing (SDCSS) and channel access framework for multi-channel cognitive radio networks (CRNs). In particular, we consider a SDCSS scheme where secondary users (SUs) perform sensing and …
Continue reading at link.springer.com (HTML) (other versions)

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATIONS NETWORKS
    • H04W74/00Wireless channel access, e.g. scheduled or random access
    • H04W74/08Non-scheduled or contention based access, e.g. random access, ALOHA, CSMA [Carrier Sense Multiple Access]
    • H04W74/0833Non-scheduled or contention based access, e.g. random access, ALOHA, CSMA [Carrier Sense Multiple Access] using a random access procedure
    • H04W74/0841Non-scheduled or contention based access, e.g. random access, ALOHA, CSMA [Carrier Sense Multiple Access] using a random access procedure with collision treatment
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATIONS NETWORKS
    • H04W74/00Wireless channel access, e.g. scheduled or random access
    • H04W74/08Non-scheduled or contention based access, e.g. random access, ALOHA, CSMA [Carrier Sense Multiple Access]
    • H04W74/0808Non-scheduled or contention based access, e.g. random access, ALOHA, CSMA [Carrier Sense Multiple Access] using carrier sensing, e.g. as in CSMA
    • H04W74/0816Non-scheduled or contention based access, e.g. random access, ALOHA, CSMA [Carrier Sense Multiple Access] using carrier sensing, e.g. as in CSMA carrier sensing with collision avoidance
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATIONS NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchical pre-organized networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/10Small scale networks; Flat hierarchical networks
    • H04W84/12WLAN [Wireless Local Area Networks]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATIONS NETWORKS
    • H04W72/00Local resource management, e.g. wireless traffic scheduling or selection or allocation of wireless resources
    • H04W72/12Dynamic Wireless traffic scheduling; Dynamically scheduled allocation on shared channel
    • H04W72/1205Schedule definition, set-up or creation
    • H04W72/1215Schedule definition, set-up or creation for collaboration of different radio technologies
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATIONS NETWORKS
    • H04W72/00Local resource management, e.g. wireless traffic scheduling or selection or allocation of wireless resources
    • H04W72/04Wireless resource allocation
    • H04W72/08Wireless resource allocation where an allocation plan is defined based on quality criteria
    • H04W72/085Wireless resource allocation where an allocation plan is defined based on quality criteria using measured or perceived quality
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATIONS NETWORKS
    • H04W84/00Network topologies
    • H04W84/18Self-organizing networks, e.g. ad-hoc networks or sensor networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATIONS NETWORKS
    • H04W72/00Local resource management, e.g. wireless traffic scheduling or selection or allocation of wireless resources
    • H04W72/04Wireless resource allocation
    • H04W72/0406Wireless resource allocation involving control information exchange between nodes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATIONS NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/14Spectrum sharing arrangements between different networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATIONS NETWORKS
    • H04W28/00Network traffic or resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/28Data switching networks characterised by path configuration, e.g. local area networks [LAN], wide area networks [WAN]
    • H04L12/40Bus networks
    • H04L12/407Bus networks with decentralised control
    • H04L12/413Bus networks with decentralised control with random access, e.g. carrier-sense multiple-access with collision detection (CSMA-CD)
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna systems, i.e. transmission or reception using multiple antennas
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATIONS NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L63/00Network architectures or network communication protocols for network security
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATIONS NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/69Spread spectrum techniques
    • H04B1/7163Spread spectrum techniques using impulse radio

Similar Documents

Publication Publication Date Title
Tan et al. Joint cooperative spectrum sensing and MAC protocol design for multi-channel cognitive radio networks
Zhang et al. CREAM-MAC: Cognitive radio-enabled multi-channel MAC protocol over dynamic spectrum access networks
Su et al. CREAM-MAC: An efficient cognitive radio-enabled multi-channel MAC protocol for wireless networks
Le Channel assignment with access contention resolution for cognitive radio networks
Le Distributed MAC protocol for cognitive radio networks: Design, analysis, and optimization
Zhao et al. FMAC: A fair MAC protocol for coexisting cognitive radio networks
Dibaei et al. Full-duplex medium access control protocols in wireless networks: A survey
CN102056325B (en) Multiple access method based on multiple-input multiple-output antenna
US9706575B2 (en) Multiple access method and system with frequency multiplexing of several request to send messages per source node
Lim et al. A self-scheduling multi-channel cognitive radio MAC protocol based on cooperative communications
Jung et al. Asynchronous medium access protocol for multi-user MIMO based uplink WLANs
Hoang et al. Design and analysis for an 802.11-based cognitive radio network
Kaynia et al. Performance of ALOHA and CSMA in spatially distributed wireless networks
Kiran et al. Design and network topology-specific renewal-theoretic analysis of a MAC protocol for asymmetric full-duplex WLANs
Khairy et al. Enabling efficient multi-channel bonding for IEEE 802.11 ac WLANs
Lee et al. Understanding interference and carrier sensing in wireless mesh networks
Chen et al. Saturation throughput analysis of an asymmetric full-duplex MAC protocol in WLANs with hidden terminals
Kim et al. Performance analysis of directional CSMA/CA for IEEE 802.15. 3c under saturation environments
Panda et al. Saturation throughput analysis of a system of interfering IEEE 802.11 WLANs
Fihri et al. A survey on decentralized random access MAC protocols for cognitive radio networks
Zuo et al. A distributed IBFD MAC mechanism and non-saturation throughput analysis for wireless networks
Hasan et al. A novel multichannel cognitive radio network with throughput analysis at saturation load
Peng et al. NCSMA: A NOMA-Based CSMA/CA Protocol for Ad Hoc Networks
Le General analytical framework for cooperative sensing and access trade-off optimization
Lei et al. Achieving weighted fairness in WLAN mesh networks: An analytical model