Siddique et al., 2022 - Google Patents
Learning classifier systems: cognitive inspired machine learning for eXplainable AISiddique et al., 2022
View PDF- Document ID
- 6186708163695408148
- Author
- Siddique A
- Browne W
- Publication year
- Publication venue
- Proceedings of the Genetic and Evolutionary Computation Conference Companion
External Links
Snippet
Instructors Page 1 1 Learning Classifier Systems: Cognitive inspired Machine Learning for
eXplainable AI Abubakar Siddique1,2 Will Browne 1-Victoria University of Wellington
Queensland University of Technology Wellington, New Zealand Queensland, Australia 2-School …
- 238000010801 machine learning 0 title description 8
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06N—COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N99/00—Subject matter not provided for in other groups of this subclass
- G06N99/005—Learning machines, i.e. computer in which a programme is changed according to experience gained by the machine itself during a complete run
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06N—COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computer systems based on biological models
- G06N3/12—Computer systems based on biological models using genetic models
- G06N3/126—Genetic algorithms, i.e. information processing using digital simulations of the genetic system
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06N—COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computer systems based on biological models
- G06N3/02—Computer systems based on biological models using neural network models
- G06N3/04—Architectures, e.g. interconnection topology
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06K—RECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
- G06K9/00—Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
- G06K9/62—Methods or arrangements for recognition using electronic means
- G06K9/6267—Classification techniques
- G06K9/6279—Classification techniques relating to the number of classes
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06N—COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computer systems based on biological models
- G06N3/02—Computer systems based on biological models using neural network models
- G06N3/08—Learning methods
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06N—COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N5/00—Computer systems utilising knowledge based models
- G06N5/02—Knowledge representation
- G06N5/022—Knowledge engineering, knowledge acquisition
- G06N5/025—Extracting rules from data
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06K—RECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
- G06K9/00—Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
- G06K9/62—Methods or arrangements for recognition using electronic means
- G06K9/6267—Classification techniques
- G06K9/6268—Classification techniques relating to the classification paradigm, e.g. parametric or non-parametric approaches
- G06K9/6269—Classification techniques relating to the classification paradigm, e.g. parametric or non-parametric approaches based on the distance between the decision surface and training patterns lying on the boundary of the class cluster, e.g. support vector machines
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06N—COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N5/00—Computer systems utilising knowledge based models
- G06N5/04—Inference methods or devices
- G06N5/043—Distributed expert systems, blackboards
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06K—RECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
- G06K9/00—Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
- G06K9/62—Methods or arrangements for recognition using electronic means
- G06K9/6217—Design or setup of recognition systems and techniques; Extraction of features in feature space; Clustering techniques; Blind source separation
- G06K9/6256—Obtaining sets of training patterns; Bootstrap methods, e.g. bagging, boosting
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06K—RECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
- G06K9/00—Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
- G06K9/62—Methods or arrangements for recognition using electronic means
- G06K9/6217—Design or setup of recognition systems and techniques; Extraction of features in feature space; Clustering techniques; Blind source separation
- G06K9/6232—Extracting features by transforming the feature space, e.g. multidimensional scaling; Mappings, e.g. subspace methods
- G06K9/6251—Extracting features by transforming the feature space, e.g. multidimensional scaling; Mappings, e.g. subspace methods based on a criterion of topology preservation, e.g. multidimensional scaling, self-organising maps
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06N—COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N7/00—Computer systems based on specific mathematical models
- G06N7/005—Probabilistic networks
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F19/00—Digital computing or data processing equipment or methods, specially adapted for specific applications
- G06F19/10—Bioinformatics, i.e. methods or systems for genetic or protein-related data processing in computational molecular biology
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F15/00—Digital computers in general; Data processing equipment in general
- G06F15/18—Digital computers in general; Data processing equipment in general in which a programme is changed according to experience gained by the computer itself during a complete run; Learning machines
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06Q—DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTING PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTING PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q10/00—Administration; Management
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F17/00—Digital computing or data processing equipment or methods, specially adapted for specific functions
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Alzubaidi et al. | A survey on deep learning tools dealing with data scarcity: definitions, challenges, solutions, tips, and applications | |
Flagel et al. | The unreasonable effectiveness of convolutional neural networks in population genetic inference | |
Sanchez et al. | Deep learning for population size history inference: Design, comparison and combination with approximate Bayesian computation | |
Singh et al. | A review of studies on machine learning techniques | |
US11651216B2 (en) | Automatic XAI (autoXAI) with evolutionary NAS techniques and model discovery and refinement | |
Squillero et al. | Divergence of character and premature convergence: A survey of methodologies for promoting diversity in evolutionary optimization | |
US20110202322A1 (en) | Computer Implemented Method for Discovery of Markov Boundaries from Datasets with Hidden Variables | |
Ganatra et al. | Initial classification through back propagation in a neural network following optimization through GA to evaluate the fitness of an algorithm | |
Huang et al. | Harnessing deep learning for population genetic inference | |
Sarkar et al. | Selecting informative rules with parallel genetic algorithm in classification problem | |
Auliac et al. | Evolutionary approaches for the reverse-engineering of gene regulatory networks: A study on a biologically realistic dataset | |
Stein et al. | Learning classifier systems: from principles to modern systems | |
Siddique et al. | Learning classifier systems: cognitive inspired machine learning for eXplainable AI | |
Gomes et al. | On the prediction of long-lived bugs: An analysis and comparative study using FLOSS projects | |
Yan et al. | Bayesian network modeling for evolutionary genetic structures | |
Urbanowicz et al. | Introducing rule-based machine learning: a practical guide | |
Saunders et al. | Automated Machine Learning for Positive-Unlabelled Learning | |
Galván et al. | Evolutionary multi-objective optimisation in neurotrajectory prediction | |
Siddique et al. | Modern applications of evolutionary rule-based machine learning | |
Lo | Early software reliability prediction based on support vector machines with genetic algorithms | |
Teoh et al. | Artificial Intelligence in Business Management | |
Wu et al. | Memetic algorithm based support vector machine classification | |
Phasinam et al. | Fundamental of Machine Learning | |
Koh et al. | Artificial intelligence (AI) fundamentals for the display industry: A review | |
Abdelbari et al. | A genetic programming ensemble method for learning dynamical system models |