Eppeldauer et al., 2007 - Google Patents
Short-wave infrared radiometers design and characterizationsEppeldauer et al., 2007
View PDF- Document ID
- 612399728446686438
- Author
- Eppeldauer G
- Yoon H
- Publication year
- Publication venue
- Infrared Technology and Applications XXXIII
External Links
Snippet
Short-wave infrared (SW-IR) radiometers have been developed to extend the NIST reference responsivity scales from the silicon wavelength range to 2500 nm. In addition to spectral power responsivity measurements, where 5 mm diameter extended-InGaAs (EIGA) …
- 238000005259 measurement 0 abstract description 24
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01J—MEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRA-RED, VISIBLE OR ULTRA-VIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
- G01J5/00—Radiation pyrometry
- G01J5/02—Details
- G01J5/08—Optical features
- G01J5/0803—Optical elements not provided otherwise, e.g. optical manifolds, gratings, holograms, cubic beamsplitters, prisms, particular coatings
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01J—MEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRA-RED, VISIBLE OR ULTRA-VIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
- G01J5/00—Radiation pyrometry
- G01J5/10—Radiation pyrometry using electric radiation detectors
- G01J5/20—Radiation pyrometry using electric radiation detectors using resistors, thermistors, or semi-conductors sensitive to radiation
- G01J5/22—Electrical features
- G01J5/24—Use of a specially-adapted circuit, e.g. bridge circuit
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01J—MEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRA-RED, VISIBLE OR ULTRA-VIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
- G01J5/00—Radiation pyrometry
- G01J5/50—Radiation pyrometry using techniques specified in the subgroups below
- G01J5/52—Radiation pyrometry using techniques specified in the subgroups below using comparison with reference sources, e.g. disappearing-filament pyrometer
- G01J5/522—Reference sources, e.g. standard lamps; Black bodies
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01J—MEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRA-RED, VISIBLE OR ULTRA-VIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
- G01J5/00—Radiation pyrometry
- G01J5/02—Details
- G01J5/04—Casings Mountings
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01J—MEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRA-RED, VISIBLE OR ULTRA-VIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
- G01J5/00—Radiation pyrometry
- G01J5/02—Details
- G01J5/06—Arrangements for eliminating effects of disturbing radiation
- G01J2005/067—Compensating for environment parameters
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01J—MEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRA-RED, VISIBLE OR ULTRA-VIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
- G01J5/00—Radiation pyrometry
- G01J5/50—Radiation pyrometry using techniques specified in the subgroups below
- G01J5/60—Radiation pyrometry using techniques specified in the subgroups below using determination of colour temperature Pyrometry using two wavelengths filtering; using selective, monochromatic or bandpass filtering; using spectral scanning
- G01J5/602—Radiation pyrometry using techniques specified in the subgroups below using determination of colour temperature Pyrometry using two wavelengths filtering; using selective, monochromatic or bandpass filtering; using spectral scanning using selective, monochromatic or bandpass filtering
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01J—MEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRA-RED, VISIBLE OR ULTRA-VIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
- G01J5/00—Radiation pyrometry
- G01J5/10—Radiation pyrometry using electric radiation detectors
- G01J5/12—Radiation pyrometry using electric radiation detectors using thermoelectric elements, e.g. thermocouples
- G01J5/14—Electrical features
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01J—MEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRA-RED, VISIBLE OR ULTRA-VIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
- G01J5/00—Radiation pyrometry
- G01J2005/0048—Calibrating; Correcting
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01J—MEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRA-RED, VISIBLE OR ULTRA-VIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
- G01J1/00—Photometry, e.g. photographic exposure meter
- G01J1/42—Photometry, e.g. photographic exposure meter using electric radiation detectors
- G01J1/429—Photometry, e.g. photographic exposure meter using electric radiation detectors applied to measurement of ultraviolet light
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01J—MEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRA-RED, VISIBLE OR ULTRA-VIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
- G01J1/00—Photometry, e.g. photographic exposure meter
- G01J1/02—Details
- G01J1/04—Optical or mechnical part supplementary adjustable parts
- G01J1/0488—Optical or mechnical part supplementary adjustable parts with spectral filtering
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01J—MEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRA-RED, VISIBLE OR ULTRA-VIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
- G01J5/00—Radiation pyrometry
- G01J5/0003—Radiation pyrometry for sensing the radiant heat transfer of samples, e.g. emittance meter
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01J—MEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRA-RED, VISIBLE OR ULTRA-VIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
- G01J5/00—Radiation pyrometry
- G01J2005/0077—Imaging
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01J—MEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRA-RED, VISIBLE OR ULTRA-VIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
- G01J1/00—Photometry, e.g. photographic exposure meter
- G01J1/10—Photometry, e.g. photographic exposure meter by comparison with reference light or electric value provisionally void
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01K—MEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
- G01K11/00—Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00
- G01K11/12—Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00 using change of colour or translucency
- G01K11/125—Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00 using change of colour or translucency using change in reflectance
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01K—MEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
- G01K17/00—Measuring quantity of heat
- G01K17/06—Measuring quantity of heat conveyed by flowing mediums, e.g. in heating systems e.g. the quantity of heat in a transporting medium, delivered to or consumed in an expenditure device
- G01K17/08—Measuring quantity of heat conveyed by flowing mediums, e.g. in heating systems e.g. the quantity of heat in a transporting medium, delivered to or consumed in an expenditure device based upon measurement of temperature difference or of a temperature
- G01K17/20—Measuring quantity of heat conveyed by flowing mediums, e.g. in heating systems e.g. the quantity of heat in a transporting medium, delivered to or consumed in an expenditure device based upon measurement of temperature difference or of a temperature across a radiating surface, combined with ascertainment of the heat transmission coefficient
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01J—MEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRA-RED, VISIBLE OR ULTRA-VIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
- G01J3/00—Spectrometry; Spectrophotometry; Monochromators; Measuring colour
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Müller et al. | Development of a fast fiber-optic two-color pyrometer for the temperature measurement of surfaces with varying emissivities | |
Yoon et al. | Performance comparisons of InGaAs, extended InGaAs, and short-wave HgCdTe detectors between 1 µm and 2.5 µm | |
Yoon et al. | Thermodynamic radiation thermometry using radiometers calibrated for radiance responsivity | |
Eppeldauer et al. | Short-wave infrared radiometers design and characterizations | |
Eppeldauer et al. | Extension of the NIST spectral power-responsivity calibration service to 2500 nm | |
Zheng et al. | High-accuracy primary and transfer standards for radiometric calibration | |
Rice | An electrically substituted bolometer as a transfer-standard detector | |
Yoon et al. | Towards high-accuracy primary spectral radiometry from 400 K to 1300 K | |
Eppeldauer et al. | Spectral irradiance responsivity measurements between 1 µm and 5 µm | |
Yoon et al. | SSE-and noise-optimized InGaAs radiation thermometer | |
Morozova et al. | An absolute cryogenic radiometer for laser calibration and characterization of photodetectors | |
Eppeldauer et al. | Radiometer standard for absolute responsivity calibrations from 950 nm to 1650 nm with 0.05%(k= 2) uncertainty | |
Yuan et al. | Linearity study of a spectral emissivity measurement facility | |
Eppeldauer et al. | PV-MCT working standard radiometer | |
Sohn | Understanding the Radiation Thermometers | |
Karmalawi | Radiometric Traceability for Pyranometer Calibration Based on High Flux LEDs and Reference Detector | |
Allen et al. | The development and characterization of an absolute pyrometer calibrated for radiance responsivity | |
Eppeldauer | The Properties of Optical Radiation Detectors and Radiometers | |
Eppeldauer et al. | AC-mode short-wavelength IR radiation thermometers for measurement of ambient temperatures | |
Eppeldauer et al. | New working standards to disseminate NIST radiometric and photometric scales | |
Eppeldauer et al. | InSb working standard radiometers | |
Yoon et al. | Thermodynamic radiation thermometry for the next SI | |
Eppeldauer et al. | 4. Transfer Standard Filter Radiometers: Applications to Fundamental Scales | |
Eppeldauer et al. | Spectral responsivity determination of a transfer-standard pyroelectric radiometer | |
Eppeldauer | Optical Detector and Radiometer Standards |